Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism'
- URL: http://arxiv.org/abs/2306.03358v2
- Date: Sat, 10 Jun 2023 03:55:58 GMT
- Title: Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism'
- Authors: Cecilia Ka Yuk Chan
- Abstract summary: This study explores students' perceptions of AI-giarism, an emergent form of academic dishonesty involving AI and plagiarism.
The findings portray a complex landscape of understanding, with clear disapproval for direct AI content generation.
The study provides pivotal insights for academia, policy-making, and the broader integration of AI technology in education.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This pioneering study explores students' perceptions of AI-giarism, an
emergent form of academic dishonesty involving AI and plagiarism, within the
higher education context. A survey, undertaken by 393 undergraduate and
postgraduate students from a variety of disciplines, investigated their
perceptions of diverse AI-giarism scenarios. The findings portray a complex
landscape of understanding, with clear disapproval for direct AI content
generation, yet more ambivalent attitudes towards subtler uses of AI. The study
introduces a novel instrument, as an initial conceptualization of AI-giarism,
offering a significant tool for educators and policy-makers. This scale
facilitates understanding and discussions around AI-related academic
misconduct, aiding in pedagogical design and assessment in an era of AI
integration. Moreover, it challenges traditional definitions of academic
misconduct, emphasizing the need to adapt in response to evolving AI
technology. Despite limitations, such as the rapidly changing nature of AI and
the use of convenience sampling, the study provides pivotal insights for
academia, policy-making, and the broader integration of AI technology in
education.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Responsible AI: Portraits with Intelligent Bibliometrics [30.51687434548628]
This study defined responsible AI and identified its core principles.
Empirically, this study investigated 17,799 research articles contributed by the AI community since 2015.
An analysis of a core cohort comprising 380 articles from multiple disciplines captures the most recent advancements in responsible AI.
arXiv Detail & Related papers (2024-05-05T08:40:22Z) - Artificial intelligence and the transformation of higher education
institutions [0.0]
This article develops a causal loop diagram (CLD) to map the causal feedback mechanisms of AI transformation in a typical HEI.
Our model accounts for the forces that drive the AI transformation and the consequences of the AI transformation on value creation in a typical HEI.
The article identifies and analyzes several reinforcing and balancing feedback loops, showing how the HEI invests in AI to improve student learning, research, and administration.
arXiv Detail & Related papers (2024-02-13T00:36:10Z) - From Algorithm Worship to the Art of Human Learning: Insights from 50-year journey of AI in Education [0.0]
Current discourse surrounding Artificial Intelligence (AI) oscillates between hope and apprehension.
This paper delves into the complexities of AI's role in Education, addressing the mixed messages that have both enthused and alarmed educators.
It explores the promises that AI holds for enhancing learning through personalisation at scale, against the backdrop of concerns about ethical implications.
arXiv Detail & Related papers (2024-02-05T16:12:14Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
This paper examines the transformative role of Large Language Models (LLMs) in education and their potential as learning tools.
The authors propose seven approaches for utilizing AI in classrooms: AI-tutor, AI-coach, AI-mentor, AI-teammate, AI-tool, AI-simulator, and AI-student.
arXiv Detail & Related papers (2023-06-13T03:36:36Z) - Artificial intelligence in government: Concepts, standards, and a
unified framework [0.0]
Recent advances in artificial intelligence (AI) hold the promise of transforming government.
It is critical that new AI systems behave in alignment with the normative expectations of society.
arXiv Detail & Related papers (2022-10-31T10:57:20Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.