Responsible AI: Portraits with Intelligent Bibliometrics
- URL: http://arxiv.org/abs/2405.02846v1
- Date: Sun, 5 May 2024 08:40:22 GMT
- Title: Responsible AI: Portraits with Intelligent Bibliometrics
- Authors: Yi Zhang, Mengjia Wu, Guangquan Zhang, Jie Lu,
- Abstract summary: This study defined responsible AI and identified its core principles.
Empirically, this study investigated 17,799 research articles contributed by the AI community since 2015.
An analysis of a core cohort comprising 380 articles from multiple disciplines captures the most recent advancements in responsible AI.
- Score: 30.51687434548628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shifting the focus from principles to practical implementation, responsible artificial intelligence (AI) has garnered considerable attention across academia, industry, and society at large. Despite being in its nascent stages, this emerging field grapples with nebulous concepts and intricate knowledge frameworks. By analyzing three prevailing concepts - explainable AI, trustworthy AI, and ethical AI, this study defined responsible AI and identified its core principles. Methodologically, this study successfully demonstrated the implementation of leveraging AI's capabilities into bibliometrics for enhanced knowledge discovery and the cross-validation of experimentally examined models with domain insights. Empirically, this study investigated 17,799 research articles contributed by the AI community since 2015. This involves recognizing key technological players and their relationships, unveiling the topical landscape and hierarchy of responsible AI, charting its evolution, and elucidating the interplay between the responsibility principles and primary AI techniques. An analysis of a core cohort comprising 380 articles from multiple disciplines captures the most recent advancements in responsible AI. As one of the pioneering bibliometric studies dedicated to exploring responsible AI, this study will provide comprehensive macro-level insights, enhancing the understanding of responsible AI while furnishing valuable knowledge support for AI regulation and governance initiatives.
Related papers
- Responsible Artificial Intelligence: A Structured Literature Review [0.0]
The EU has recently issued several publications emphasizing the necessity of trust in AI.
This highlights the urgent need for international regulation.
This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI.
arXiv Detail & Related papers (2024-03-11T17:01:13Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism' [0.0]
This study explores students' perceptions of AI-giarism, an emergent form of academic dishonesty involving AI and plagiarism.
The findings portray a complex landscape of understanding, with clear disapproval for direct AI content generation.
The study provides pivotal insights for academia, policy-making, and the broader integration of AI technology in education.
arXiv Detail & Related papers (2023-06-06T02:22:08Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Responsible AI Pattern Catalogue: A Collection of Best Practices for AI
Governance and Engineering [20.644494592443245]
We present a Responsible AI Pattern Catalogue based on the results of a Multivocal Literature Review (MLR)
Rather than staying at the principle or algorithm level, we focus on patterns that AI system stakeholders can undertake in practice to ensure that the developed AI systems are responsible throughout the entire governance and engineering lifecycle.
arXiv Detail & Related papers (2022-09-12T00:09:08Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.