A joint optimization approach of parameterized quantum circuits with a
tensor network
- URL: http://arxiv.org/abs/2402.12105v1
- Date: Mon, 19 Feb 2024 12:53:52 GMT
- Title: A joint optimization approach of parameterized quantum circuits with a
tensor network
- Authors: Clara Ferreira Cores, Kaur Kristjuhan, Mark Nicholas Jones
- Abstract summary: Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the advantage quantum computers are expected to deliver when
performing simulations compared to their classical counterparts, the current
noisy intermediate-scale quantum (NISQ) devices remain limited in their
capabilities. The training of parameterized quantum circuits (PQCs) remains a
significant practical challenge, exacerbated by the requirement of shallow
circuit depth necessary for their hardware implementation. Hybrid methods
employing classical computers alongside quantum devices, such as the
Variational Quantum Eigensolver (VQE), have proven useful for analyzing the
capabilities of NISQ devices to solve relevant optimization problems. Still, in
the simulation of complex structures involving the many-body problem in quantum
mechanics, major issues remain about the representation of the system and
obtaining results which clearly outperform classical computational devices. In
this research contribution we propose the use of parameterized Tensor Networks
(TNs) to attempt an improved performance of the VQE algorithm. A joint approach
is presented where the Hamiltonian of a system is encapsulated into a Matrix
Product Operator (MPO) within a parameterized unitary TN hereby splitting up
the optimization task between the TN and the VQE. We show that the hybrid
TN-VQE implementation improves the convergence of the algorithm in comparison
to optimizing randomly-initialized quantum circuits via VQE.
Related papers
- Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut
Problems with QAOA [1.5047640669285467]
Quantum approximate optimization algorithm (QAOA) is one of the popular quantum algorithms that are used to solve optimization problems via approximations.
However, performing QAOA on virtual quantum computers suffers from a slow simulation speed for solving optimization problems.
We propose techniques to accelerate QCS for QAOA using mathematical optimizations to compress quantum operations.
arXiv Detail & Related papers (2023-12-05T06:08:57Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
We introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm.
VQASC requires optimization of fewer parameters than the system size, N, traditionally required in classical problems.
We present numerical results from both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-09-08T17:54:42Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Theoretical Error Performance Analysis for Variational Quantum Circuit
Based Functional Regression [83.79664725059877]
In this work, we put forth an end-to-end quantum neural network, namely, TTN-VQC, for dimensionality reduction and functional regression.
We also characterize the optimization properties of TTN-VQC by leveraging the Polyak-Lojasiewicz (PL) condition.
arXiv Detail & Related papers (2022-06-08T06:54:07Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.