Heralded photonic graph states with inefficient quantum emitters
- URL: http://arxiv.org/abs/2405.13263v3
- Date: Tue, 28 Jan 2025 02:36:22 GMT
- Title: Heralded photonic graph states with inefficient quantum emitters
- Authors: Maxwell Gold, Jianlong Lin, Eric Chitambar, Elizabeth A. Goldschmidt,
- Abstract summary: Quantum emitter-based schemes for the generation of photonic graph states offer a promising, resource efficient methodology.
We present a heralded scheme for making photonic graph states that is compatible with the typically poor photon collection from state-of-the-art quantum emitters.
- Score: 2.612403257963011
- License:
- Abstract: Quantum emitter-based schemes for the generation of photonic graph states offer a promising, resource efficient methodology for realizing distributed quantum computation and communication protocols on near-term hardware. We present a heralded scheme for making photonic graph states that is compatible with the typically poor photon collection from state-of-the-art coherent quantum emitters. We demonstrate that the construction time for large graph states can be polynomial in the photon collection efficiency, as compared to the exponential scaling of current emitter-based schemes, which assume deterministic photon collection. The additional overhead here consists of an extra spin qubit plus one additional spin-spin entangling gate per photon added to the graph. While the proposed scheme requires both non-demolition measurement and efficient storage of photons in order to generate graph states for arbitrary applications, we show that many useful tasks, including measurement-based quantum computation, can be implemented without these requirements. As a use-case of our scheme, we construct a protocol for secure two-party computation that can be implemented efficiently on current hardware. Estimates of the fidelity to produce graph states used in the computation are given assuming current and near-term fidelities for highly coherent quantum emitters.
Related papers
- Atom-mediated deterministic generation and stitching of photonic graph states [0.0]
Highly-entangled multi-photon graph states are a crucial resource in photonic quantum computation and communication.
We introduce a multi-gate quantum node comprised of a single atom in a W-type level scheme coupled to an optical resonator.
The ability to deterministically entangle photonic qubits enables expanding the generated state by stitching graphs from different devices.
arXiv Detail & Related papers (2024-06-02T20:33:40Z) - Generating scalable graph states in an atom-nanophotonic interface [0.0]
scalable graph states are essential for measurement-based quantum computation and many entanglement-assisted applications in quantum technologies.
Here we propose to prepare high-fidelity and scalable graph states in one and two dimensions, which can be tailored in an atom-nanophotonic cavity.
An analysis of state fidelity is also presented, and the state preparation probability can be optimized via multiqubit state carvings and sequential single-photon probes.
arXiv Detail & Related papers (2023-10-06T03:33:32Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Deterministic generation of qudit photonic graph states from quantum
emitters [0.0]
We show that our approach can be applied to generate any qudit graph state.
We construct protocols to generate one- and two-dimensional qudit cluster states, absolutely maximally entangled states, and logical states of quantum error correcting codes.
arXiv Detail & Related papers (2022-11-23T19:00:01Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Near-deterministic hybrid generation of arbitrary photonic graph states
using a single quantum emitter and linear optics [0.0]
We introduce near-deterministic solutions for the generation of graph states using the current quantum emitter capabilities.
Our results should pave the way towards the practical implementation of resource-efficient quantum information processing.
arXiv Detail & Related papers (2022-05-19T17:59:59Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
We propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Ego-graph based Quantum Graph Neural Network (egoQGNN)
egoQGNN implements the GNN theoretical framework using the tensor product and unity matrix representation, which greatly reduces the number of model parameters required.
The architecture is based on a novel mapping from real-world data to Hilbert space.
arXiv Detail & Related papers (2022-01-13T16:35:45Z) - Photonic resource state generation from a minimal number of quantum
emitters [0.0]
Multi-photon entangled graph states are a fundamental resource in quantum communication networks, distributed quantum computing, and sensing.
Here, we present an algorithm that, given a desired multi-photon graph state, determines the minimum number of quantum emitters and precise operation sequences that can produce it.
arXiv Detail & Related papers (2021-08-27T19:16:56Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.