論文の概要: On the Robustness of Arabic Speech Dialect Identification
- arxiv url: http://arxiv.org/abs/2306.03789v1
- Date: Thu, 1 Jun 2023 21:31:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-11 13:38:14.349143
- Title: On the Robustness of Arabic Speech Dialect Identification
- Title(参考訳): アラビア語方言識別のロバスト性について
- Authors: Peter Sullivan, AbdelRahim Elmadany, Muhammad Abdul-Mageed
- Abstract要約: アラビア方言識別(ADI)ツールは、音声認識モデルの訓練に必要な大規模データ収集パイプラインの重要な部分である。
我々はSSL機能から転送学習と直接分類を評価する。
我々の分析は、ドメインシフトがADIモデルにとって大きな課題であることを確認した。
- 参考スコア(独自算出の注目度): 6.68194398006805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arabic dialect identification (ADI) tools are an important part of the
large-scale data collection pipelines necessary for training speech recognition
models. As these pipelines require application of ADI tools to potentially
out-of-domain data, we aim to investigate how vulnerable the tools may be to
this domain shift. With self-supervised learning (SSL) models as a starting
point, we evaluate transfer learning and direct classification from SSL
features. We undertake our evaluation under rich conditions, with a goal to
develop ADI systems from pretrained models and ultimately evaluate performance
on newly collected data. In order to understand what factors contribute to
model decisions, we carry out a careful human study of a subset of our data.
Our analysis confirms that domain shift is a major challenge for ADI models. We
also find that while self-training does alleviate this challenges, it may be
insufficient for realistic conditions.
- Abstract(参考訳): アラビア方言識別(ADI)ツールは、音声認識モデルの訓練に必要な大規模データ収集パイプラインの重要な部分である。
これらのパイプラインは、ドメイン外データに対するADIツールの適用を必要とするため、このドメインシフトに対するツールの脆弱性について調査することを目指している。
自己教師付き学習(SSL)モデルを出発点として、転送学習とSSL機能からの直接分類を評価する。
我々は、事前訓練されたモデルからADIシステムを開発し、最終的に新たに収集したデータの性能を評価することを目標として、リッチな条件下で評価を行う。
モデル決定にどのような要因が寄与するかを理解するため、我々はデータのサブセットについて慎重に人間の研究を行う。
我々の分析は、ドメインシフトがADIモデルにとって大きな課題であることを確認した。
また、自己学習はこれらの課題を緩和するが、現実的な状況では不十分である。
関連論文リスト
- A Survey of the Self Supervised Learning Mechanisms for Vision Transformers [5.152455218955949]
視覚タスクにおける自己教師あり学習(SSL)の適用は注目されている。
SSL手法を体系的に分類する包括的分類法を開発した。
SSLの背後にあるモチベーションについて議論し、人気のある事前トレーニングタスクをレビューし、この分野の課題と進歩を強調します。
論文 参考訳(メタデータ) (2024-08-30T07:38:28Z) - Reasoning and Tools for Human-Level Forecasting [0.4261908132550109]
本稿では,Reasoning and Tools for Forecasting (RTF)について紹介する。
我々は,競争予測プラットフォームからの質問でモデルを評価し,本手法が人間の予測に勝るものであることを実証した。
論文 参考訳(メタデータ) (2024-08-21T23:42:06Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
そこでは、異なる訓練パラダイムから学習特性を用いてモデルエラーを検出する。
我々は,制御的かつ自己管理的な方法で,点群における意味的および予測的動作ラベルを学習することにより,我々のアプローチを実証する。
大規模定性解析を行い、ライダー点雲にラベル付き異常を持つ最初のデータセットであるLidarCODAを提示する。
論文 参考訳(メタデータ) (2024-07-19T13:36:35Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
大規模言語モデル(LLM)の自己教師型評価のためのフレームワークを提案する。
閉書知識,毒性,長期文脈依存性を測定するための自己指導型評価戦略を実証する。
自己監督評価と人監督評価との間には強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-06-23T17:59:09Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
セルフ・スーパーバイザード・ラーニングは現実世界のアプリケーション、特に医療や自動運転車のようなデータ・ハングリーな分野に不可欠である。
本稿では Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision や BERT や GPT for Language Task など,SSL メソッドの変種について検討する。
我々のゴールは、実験から出力されたベンチマークを作成し、信頼性のある機械学習で新しいSSLメソッドの出発点を提供することです。
論文 参考訳(メタデータ) (2022-12-23T15:46:23Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) は、ある側面に対する感情の極性を決定することを目的としている。
事前トレーニングと下流ABSAデータセットの間には、常に深刻なドメインシフトが存在する。
我々は,バニラ・プレトレイン・ファインチューンパイプラインにアライメント事前訓練フレームワークを導入する。
論文 参考訳(メタデータ) (2021-10-26T04:03:45Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。