Energy-Based Models for Cross-Modal Localization using Convolutional
Transformers
- URL: http://arxiv.org/abs/2306.04021v1
- Date: Tue, 6 Jun 2023 21:27:08 GMT
- Title: Energy-Based Models for Cross-Modal Localization using Convolutional
Transformers
- Authors: Alan Wu and Michael S. Ryoo
- Abstract summary: We present a novel framework for localizing a ground vehicle mounted with a range sensor against satellite imagery in the absence of GPS.
We propose a method using convolutional transformers that performs accurate metric-level localization in a cross-modal manner.
We train our model end-to-end and demonstrate our approach achieving higher accuracy than the state-of-the-art on KITTI, Pandaset, and a custom dataset.
- Score: 52.27061799824835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel framework using Energy-Based Models (EBMs) for localizing
a ground vehicle mounted with a range sensor against satellite imagery in the
absence of GPS. Lidar sensors have become ubiquitous on autonomous vehicles for
describing its surrounding environment. Map priors are typically built using
the same sensor modality for localization purposes. However, these map building
endeavors using range sensors are often expensive and time-consuming.
Alternatively, we leverage the use of satellite images as map priors, which are
widely available, easily accessible, and provide comprehensive coverage. We
propose a method using convolutional transformers that performs accurate
metric-level localization in a cross-modal manner, which is challenging due to
the drastic difference in appearance between the sparse range sensor readings
and the rich satellite imagery. We train our model end-to-end and demonstrate
our approach achieving higher accuracy than the state-of-the-art on KITTI,
Pandaset, and a custom dataset.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - SemVecNet: Generalizable Vector Map Generation for Arbitrary Sensor Configurations [3.8472678261304587]
We propose a modular pipeline for vector map generation with improved generalization to sensor configurations.
By adopting a BEV semantic map robust to different sensor configurations, our proposed approach significantly improves the generalization performance.
arXiv Detail & Related papers (2024-04-30T23:45:16Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Uncertainty-aware Vision-based Metric Cross-view Geolocalization [25.87104194833264]
We present an end-to-end differentiable model that uses the ground and aerial images to predict a probability distribution over possible vehicle poses.
We improve the previous state-of-the-art by a large margin even without ground or aerial data from the test region.
arXiv Detail & Related papers (2022-11-22T10:23:20Z) - Satellite Image Based Cross-view Localization for Autonomous Vehicle [59.72040418584396]
This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy.
Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view.
arXiv Detail & Related papers (2022-07-27T13:16:39Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
We propose a novel method for geo-tracking in outdoor environments by registering a vehicle's sensor information with aerial imagery of an unseen target region.
We train a model in a metric learning setting to extract visual features from ground and aerial images.
Our method is the first to utilize on-board cameras in an end-to-end differentiable model for metric self-localization on unseen orthophotos.
arXiv Detail & Related papers (2022-03-07T12:25:44Z) - RaLL: End-to-end Radar Localization on Lidar Map Using Differentiable
Measurement Model [14.155337185792279]
We propose an end-to-end deep learning framework for Radar Localization on Lidar Map (RaLL)
RaLL exploits the mature lidar mapping technique, thus reducing the cost of radar mapping.
Our proposed system achieves superior performance over $90km$ driving, even in generalization scenarios where the model training is in UK.
arXiv Detail & Related papers (2020-09-15T13:13:38Z) - Self-Supervised Localisation between Range Sensors and Overhead Imagery [24.18942374703494]
Publicly available satellite imagery can be an ubiquitous, cheap, and powerful tool for vehicle localisation when a prior sensor map is unavailable.
We present a learned metric localisation method that not only handles the modality difference, but is cheap to train, learning in a self-supervised fashion without metrically accurate ground truth.
arXiv Detail & Related papers (2020-06-03T08:58:54Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.