DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness
- URL: http://arxiv.org/abs/2306.04214v1
- Date: Wed, 7 Jun 2023 07:40:04 GMT
- Title: DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness
- Authors: Jianpeng Liao, Jun Yan and Qian Tao
- Abstract summary: Graph-based semi-supervised node classification has been shown to become a state-of-the-art approach in many applications with high research value and significance.
This paper proposes the Dual Hypergraph Neural Network (DualHGNN), a new dual connection model integrating both hypergraph structure learning and hypergraph representation learning simultaneously in a unified architecture.
- Score: 3.698434507617248
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph-based semi-supervised node classification has been shown to become a
state-of-the-art approach in many applications with high research value and
significance. Most existing methods are only based on the original intrinsic or
artificially established graph structure which may not accurately reflect the
"true" correlation among data and are not optimal for semi-supervised node
classification in the downstream graph neural networks. Besides, while existing
graph-based methods mostly utilize the explicit graph structure, some implicit
information, for example, the density information, can also provide latent
information that can be further exploited. To address these limitations, this
paper proposes the Dual Hypergraph Neural Network (DualHGNN), a new dual
connection model integrating both hypergraph structure learning and hypergraph
representation learning simultaneously in a unified architecture. The DualHGNN
first leverages a multi-view hypergraph learning network to explore the optimal
hypergraph structure from multiple views, constrained by a consistency loss
proposed to improve its generalization. Then, DualHGNN employs a density-aware
hypergraph attention network to explore the high-order semantic correlation
among data points based on the density-aware attention mechanism. Extensive
experiments are conducted in various benchmark datasets, and the results
demonstrate the effectiveness of the proposed approach.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs [22.64740740462169]
We propose a hypergraph learning framework named LFH that is capable of dynamic hyperedge construction and attentive embedding update.
To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments on several popular datasets.
arXiv Detail & Related papers (2023-07-07T06:26:44Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Density-Aware Hyper-Graph Neural Networks for Graph-based
Semi-supervised Node Classification [3.698434507617248]
We propose Density-Aware Hyper-Graph Neural Networks (DA-HGNN) to explore the high-order semantic correlation among data.
In our proposed approach, hyper-graph is provided to explore the high-order semantic correlation among data, and a density-aware hyper-graph attention network is presented to explore the high-order connection relationship.
arXiv Detail & Related papers (2022-01-27T13:43:14Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) is the de-facto method for hypergraph representation learning.
We propose the Residual enhanced Multi-Hypergraph Neural Network, which can fuse multi-modal information from each hypergraph effectively.
arXiv Detail & Related papers (2021-05-02T14:53:32Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.