Randomized 3D Scene Generation for Generalizable Self-Supervised
Pre-Training
- URL: http://arxiv.org/abs/2306.04237v2
- Date: Sun, 6 Aug 2023 13:32:46 GMT
- Title: Randomized 3D Scene Generation for Generalizable Self-Supervised
Pre-Training
- Authors: Lanxiao Li and Michael Heizmann
- Abstract summary: We propose a new method to generate 3D scenes with spherical harmonics.
It surpasses the previous formula-driven method with a clear margin and achieves on-par results with methods using real-world scans and CAD models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capturing and labeling real-world 3D data is laborious and time-consuming,
which makes it costly to train strong 3D models. To address this issue, recent
works present a simple method by generating randomized 3D scenes without
simulation and rendering. Although models pre-trained on the generated
synthetic data gain impressive performance boosts, previous works have two
major shortcomings. First, they focus on only one downstream task (i.e., object
detection), and the generalization to other tasks is unexplored. Second, the
contributions of generated data are not systematically studied. To obtain a
deeper understanding of the randomized 3D scene generation technique, we
revisit previous works and compare different data generation methods using a
unified setup. Moreover, to clarify the generalization of the pre-trained
models, we evaluate their performance in multiple tasks (i.e., object detection
and semantic segmentation) and with different pre-training methods (i.e.,
masked autoencoder and contrastive learning). Moreover, we propose a new method
to generate 3D scenes with spherical harmonics. It surpasses the previous
formula-driven method with a clear margin and achieves on-par results with
methods using real-world scans and CAD models.
Related papers
- 3D-VirtFusion: Synthetic 3D Data Augmentation through Generative Diffusion Models and Controllable Editing [52.68314936128752]
We propose a new paradigm to automatically generate 3D labeled training data by harnessing the power of pretrained large foundation models.
For each target semantic class, we first generate 2D images of a single object in various structure and appearance via diffusion models and chatGPT generated text prompts.
We transform these augmented images into 3D objects and construct virtual scenes by random composition.
arXiv Detail & Related papers (2024-08-25T09:31:22Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Deep Optimized Priors for 3D Shape Modeling and Reconstruction [38.79018852887249]
We introduce a new learning framework for 3D modeling and reconstruction.
We show that the proposed strategy effectively breaks the barriers constrained by the pre-trained priors.
arXiv Detail & Related papers (2020-12-14T03:56:31Z) - Leveraging 2D Data to Learn Textured 3D Mesh Generation [33.32377849866736]
We present the first generative model of textured 3D meshes.
We train our model to explain a distribution of images by modelling each image as a 3D foreground object.
It learns to generate meshes that when rendered, produce images similar to those in its training set.
arXiv Detail & Related papers (2020-04-08T18:00:37Z) - PolyGen: An Autoregressive Generative Model of 3D Meshes [22.860421649320287]
We present an approach which models the mesh directly using a Transformer-based architecture.
Our model can condition on a range of inputs, including object classes, voxels, and images.
We show that the model is capable of producing high-quality, usable meshes, and establish log-likelihood benchmarks for the mesh-modelling task.
arXiv Detail & Related papers (2020-02-23T17:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.