Thermal cycle and polaron formation in structured bosonic environments
- URL: http://arxiv.org/abs/2306.04248v2
- Date: Wed, 6 Dec 2023 17:16:10 GMT
- Title: Thermal cycle and polaron formation in structured bosonic environments
- Authors: A. Riva, D. Tamascelli, A. J. Dunnett, and A. W. Chin
- Abstract summary: We exploit the access to environmental observables to illustrate how the evolution of the open quantum system can be related to the detailed evolution of the environment it interacts with.
We analyze a two-level system strongly interacting with a super-Ohmic environment, where we discover a change in the spin-boson ground state that can be traced to the formation of polaronic states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain-mapping techniques combined with the time-dependent density matrix
renormalization group are powerful tools for simulating the dynamics of open
quantum systems interacting with structured bosonic environments. Most
interestingly, they leave the degrees of freedom of the environment open to
inspection. In this work, we fully exploit the access to environmental
observables to illustrate how the evolution of the open quantum system can be
related to the detailed evolution of the environment it interacts with. In
particular, we give a precise description of the fundamental physics that
enables the finite temperature chain-mapping formalism to express dynamical
equilibrium states. Furthermore, we analyze a two-level system strongly
interacting with a super-Ohmic environment, where we discover a change in the
spin-boson ground state that can be traced to the formation of polaronic
states.
Related papers
- Understanding and utilizing the inner bonds of process tensors [0.0]
Process tensor matrix product operators (PT-MPOs) enable numerically exact simulations for an unprecedentedly broad range of open quantum systems.
Here, we show that the inner bonds of the compressed PT-MPO represent the subspace of the full environment Liouville space.
This connection can be expressed in terms of lossy linear transformations, whose pseudoinverses facilitate the extraction of environment observables.
arXiv Detail & Related papers (2024-04-01T17:56:29Z) - Controlling local thermalization dynamics in a Floquet-engineered
dipolar ensemble [0.7437459197111806]
We show a method to probe local thermalization in a large-scale many-body system by exploiting its inherent disorder.
We observe a striking change in the characteristic shape and timescale of local correlation decay as we vary the engineered exchange anisotropy.
Our method provides an exquisite lens into the tunable nature of local thermalization dynamics.
arXiv Detail & Related papers (2022-09-19T18:45:04Z) - Perturbation theory under the truncated Wigner approximation reveals how
system-environment entanglement formation drives quantum decoherence [0.0]
Quantum decoherence is the disappearance of simple phase relations within a discrete quantum system as a result of interactions with an environment.
We introduce a theoretical framework wherein we combine the truncated Wigner approximation with standard time-dependent perturbation theory.
We show that the selective suppression of low-frequency environmental modes is particularly effective for mitigating quantum decoherence.
arXiv Detail & Related papers (2022-06-22T18:17:28Z) - From Non-Markovian Dissipation to Spatiotemporal Control of Quantum Nanodevices [0.0]
We study how energy dissipated into the environment can be remotely harvested to create transient excited/reactive states.
We also identify how reorganisation triggered by system excitation can qualitatively and reversibly alter the downstream' kinetics of a functional' quantum system.
arXiv Detail & Related papers (2022-05-20T10:46:04Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Excitation dynamics in chain-mapped environments [0.0]
Chain mapping is a most powerful tool for the simulation of open quantum system dynamics.
We investigate the transport of excitations in a chain-mapped bosonic environment.
arXiv Detail & Related papers (2020-11-23T09:22:24Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.