Excitation dynamics in chain-mapped environments
- URL: http://arxiv.org/abs/2011.11295v1
- Date: Mon, 23 Nov 2020 09:22:24 GMT
- Title: Excitation dynamics in chain-mapped environments
- Authors: Dario Tamascelli
- Abstract summary: Chain mapping is a most powerful tool for the simulation of open quantum system dynamics.
We investigate the transport of excitations in a chain-mapped bosonic environment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The chain mapping of structured environments is a most powerful tool for the
simulation of open quantum system dynamics. Once the environmental bosonic or
fermionic degrees of freedom are unitarily rearranged into a one dimensional
structure, the full power of Density Matrix Renormalization Group (DMRG) can be
exploited. Beside resulting in efficient and numerically exact simulations of
open quantum systems dynamics, chain mapping provides an unique perspective on
the environment: the interaction between the system and the environment creates
perturbations that travel along the one dimensional environment at a finite
speed, thus providing a natural notion of light-, or causal-, cone. In this
work we investigate the transport of excitations in a chain-mapped bosonic
environment. In particular, we explore the relation between the environmental
spectral density shape, parameters and temperature, and the dynamics of
excitations along the corresponding linear chains of quantum harmonic
oscillators. Our analysis unveils fundamental features of the environment
evolution, such as localization, percolation and the onset of stationary
currents.
Related papers
- Self-consistent approach to the dynamics of excitation energy transfer in multichromophoric systems [0.0]
We formulate the self-consistent Born approximation to resum the memory- kernel perturbation series in powers of the exciton-environment interaction.
We find that the self-consistent Born approximation is good (poor) at describing energy transfer modulated by an underdamped vibration resonant (off-resonant) with the exciton energy gap.
arXiv Detail & Related papers (2024-09-04T07:46:32Z) - Spectral Density Modulation and Universal Markovian Closure of Fermionic Environments [0.6990493129893112]
We show how a thermo-chemical modulation of the spectral density allows replacing the original fermionic environments with simpler, but simpler, ones.
We then provide a derivation of the fermionic Markovian closure construction, consisting of a small collection of damped fermionic modes.
We describe, in particular, how the use of the Markovian closure allows for a reduction of the time complexity of chain-mapping based algorithms.
arXiv Detail & Related papers (2024-07-13T22:13:44Z) - Understanding and utilizing the inner bonds of process tensors [0.0]
Process tensor matrix product operators (PT-MPOs) enable numerically exact simulations for an unprecedentedly broad range of open quantum systems.
Here, we show that the inner bonds of the compressed PT-MPO represent the subspace of the full environment Liouville space.
This connection can be expressed in terms of lossy linear transformations, whose pseudoinverses facilitate the extraction of environment observables.
arXiv Detail & Related papers (2024-04-01T17:56:29Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Thermal cycle and polaron formation in structured bosonic environments [0.0]
We exploit the access to environmental observables to illustrate how the evolution of the open quantum system can be related to the detailed evolution of the environment it interacts with.
We analyze a two-level system strongly interacting with a super-Ohmic environment, where we discover a change in the spin-boson ground state that can be traced to the formation of polaronic states.
arXiv Detail & Related papers (2023-06-07T08:40:04Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Perturbation theory under the truncated Wigner approximation reveals how
system-environment entanglement formation drives quantum decoherence [0.0]
Quantum decoherence is the disappearance of simple phase relations within a discrete quantum system as a result of interactions with an environment.
We introduce a theoretical framework wherein we combine the truncated Wigner approximation with standard time-dependent perturbation theory.
We show that the selective suppression of low-frequency environmental modes is particularly effective for mitigating quantum decoherence.
arXiv Detail & Related papers (2022-06-22T18:17:28Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.