論文の概要: Decentralized Technologies for AI Hubs
- arxiv url: http://arxiv.org/abs/2306.04274v1
- Date: Wed, 7 Jun 2023 09:18:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 15:18:19.572424
- Title: Decentralized Technologies for AI Hubs
- Title(参考訳): AIハブのための分散技術
- Authors: Richard Blythman, Mohamed Arshath, Salvatore Vivona, Jakub Sm\'ekal,
Hithesh Shaji
- Abstract要約: AIは大量のストレージと、AI Hubに一般的に格納されるアセットによる計算を必要とする。
これらの制限には、高いコスト、収益化と報酬の欠如、制御の欠如、報酬の難しさが含まれる。
分散AIハブの設計と構築において,これらのインフラコンポーネントが併用可能であることを示唆する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI requires heavy amounts of storage and compute with assets that are
commonly stored in AI Hubs. AI Hubs have contributed significantly to the
democratization of AI. However, existing implementations are associated with
certain benefits and limitations that stem from the underlying infrastructure
and governance systems with which they are built. These limitations include
high costs, lack of monetization and reward, lack of control and difficulty of
reproducibility. In the current work, we explore the potential of decentralized
technologies - such as Web3 wallets, peer-to-peer marketplaces, storage and
compute, and DAOs - to address some of these issues. We suggest that these
infrastructural components can be used in combination in the design and
construction of decentralized AI Hubs.
- Abstract(参考訳): AIは大量のストレージと、AI Hubに一般的に格納される資産による計算を必要とする。
AI Hubsは、AIの民主化に大きく貢献している。
しかしながら、既存の実装は、基盤となるインフラストラクチャとガバナンスシステムに由来する特定のメリットと制限に関連付けられています。
これらの制限には、高いコスト、収益化と報酬の欠如、制御の欠如、再現性の難しさが含まれる。
現在の研究では、Web3ウォレット、ピアツーピアのマーケットプレース、ストレージとコンピューティング、DAOといった分散技術の可能性を探り、これらの問題に対処しています。
分散AIハブの設計と構築において,これらのインフラコンポーネントが併用可能であることを示唆する。
関連論文リスト
- SoK: Decentralized AI (DeAI) [4.651101982820699]
ブロックチェーンベースのDeAIソリューションのためのSoK(Systematization of Knowledge)を提案する。
モデルライフサイクルに基づいて既存のDeAIプロトコルを分類する分類法を提案する。
我々は、ブロックチェーン機能がAIプロセスのセキュリティ、透明性、信頼性の向上にどのように貢献するかを調査する。
論文 参考訳(メタデータ) (2024-11-26T14:28:25Z) - Privacy-Preserving Decentralized AI with Confidential Computing [0.7893328752331561]
本稿では、Atoma Network内のCC(Confidential Computing)を用いた分散人工知能(AI)におけるプライバシ保護について述べる。
CCはハードウェアベースのTrusted Execution Environments (TEE)を活用して、機密データ処理の分離を提供する。
私たちはどのようにしてTEEをAtomaの分散フレームワークに統合できるかを検討します。
論文 参考訳(メタデータ) (2024-10-17T16:50:48Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
モバイルAIGCサービスアロケーションのための分散インセンティブ機構を提案する。
我々は、AIGCサービスのRSUへの供給と、IoVコンテキスト内のサービスに対するユーザ要求のバランスを見つけるために、マルチエージェントの深層強化学習を採用している。
論文 参考訳(メタデータ) (2024-03-29T12:46:07Z) - From Cloud to Edge: Rethinking Generative AI for Low-Resource Design
Challenges [7.1341189275030645]
私たちは、エッジで設計するための生成AIの可能性、課題、そして有望なアプローチを検討します。
目的は、設計問題に対する目覚ましいソリューションを作成する際に、生成AIのパワーを活用することである。
論文 参考訳(メタデータ) (2024-02-20T03:59:27Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
政府や企業は、AIを管理する手段として計算を活用し始めている。
計算ベースのポリシーと技術は、これらの領域を補助する可能性があるが、実装の準備ができている点で大きなバリエーションがある。
プライバシーや経済的影響、権力の中央集権化といった分野において、ガバナンスの計算方法の素早い、あるいは不十分なアプローチは重大なリスクを伴います。
論文 参考訳(メタデータ) (2024-02-13T21:10:21Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Is Decentralized AI Safer? [0.0]
さまざまなグループがオープンなAIシステムを構築し、リスクを調査し、倫理について議論している。
本稿では,ブロックチェーン技術がこれらの取り組みをどのように促進し,形式化するかを実証する。
AIの分散化は、AIのリスクと倫理的懸念を軽減するだけでなく、今後の作業で考慮すべき新しい問題も導入する、と私たちは主張する。
論文 参考訳(メタデータ) (2022-11-04T01:01:31Z) - IoT-based Route Recommendation for an Intelligent Waste Management
System [61.04795047897888]
本研究は, 空間制約を考慮したIoT対応廃棄物管理システムにおいて, 経路推薦のためのインテリジェントなアプローチを提案する。
我々のソリューションは、ビンの状態と座標を考慮に入れた複数レベルの意思決定プロセスに基づいている。
論文 参考訳(メタデータ) (2022-01-01T12:36:22Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - Exploring Energy-Accuracy Tradeoffs in AI Hardware [0.0]
我々は、アプリケーション依存のエネルギー要求を満たすために、AIシステムが最小限の精度で運用する必要があるシナリオを考察する。
本稿では,AIシステムのコストを意思決定プロセスのコストと意思決定実行のコストに分割する簡易関数を提案する。
論文 参考訳(メタデータ) (2020-11-17T17:14:28Z) - Graph Neural Networks for Decentralized Controllers [171.6642679604005]
自律エージェントで構成される動的システムは、ロボット工学、スマートグリッド、スマートシティなど、多くの関連する問題に現れる。
最適な集中型コントローラは容易に利用できるが、スケーラビリティと実用的な実装の面で制限に直面している。
グラフニューラルネットワーク(GNN)を用いて,データから分散制御系を学習するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-23T13:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。