論文の概要: Is Decentralized AI Safer?
- arxiv url: http://arxiv.org/abs/2211.05828v1
- Date: Fri, 4 Nov 2022 01:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 12:20:20.693748
- Title: Is Decentralized AI Safer?
- Title(参考訳): 分散AIは安全か?
- Authors: Casey Clifton, Richard Blythman, Kartika Tulusan
- Abstract要約: さまざまなグループがオープンなAIシステムを構築し、リスクを調査し、倫理について議論している。
本稿では,ブロックチェーン技術がこれらの取り組みをどのように促進し,形式化するかを実証する。
AIの分散化は、AIのリスクと倫理的懸念を軽減するだけでなく、今後の作業で考慮すべき新しい問題も導入する、と私たちは主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) has the potential to significantly benefit or
harm humanity. At present, a few for-profit companies largely control the
development and use of this technology, and therefore determine its outcomes.
In an effort to diversify and democratize work on AI, various groups are
building open AI systems, investigating their risks, and discussing their
ethics. In this paper, we demonstrate how blockchain technology can facilitate
and formalize these efforts. Concretely, we analyze multiple use-cases for
blockchain in AI research and development, including decentralized governance,
the creation of immutable audit trails, and access to more diverse and
representative datasets. We argue that decentralizing AI can help mitigate AI
risks and ethical concerns, while also introducing new issues that should be
considered in future work.
- Abstract(参考訳): 人工知能(AI)は人類に大きな利益をもたらすか、害を与える可能性がある。
現在、いくつかの営利企業がこの技術の開発と利用を主にコントロールしており、その結果が決定されている。
AIの仕事の多様化と民主化のために、さまざまなグループがオープンなAIシステムを構築し、リスクを調査し、倫理について議論している。
本稿では,ブロックチェーン技術がこれらの取り組みをどのように促進し,形式化するかを実証する。
具体的には、分散ガバナンス、不変監査証跡の作成、より多様で代表的なデータセットへのアクセスを含む、ai研究と開発におけるブロックチェーンの複数のユースケースを分析します。
aiの分散化は、aiのリスクと倫理的な懸念を軽減するだけでなく、将来の作業で考慮すべき新しい問題も導入する。
関連論文リスト
- SoK: Decentralized AI (DeAI) [4.651101982820699]
ブロックチェーンベースのDeAIソリューションのためのSoK(Systematization of Knowledge)を提案する。
モデルライフサイクルに基づいて既存のDeAIプロトコルを分類する分類法を提案する。
我々は、ブロックチェーン機能がAIプロセスのセキュリティ、透明性、信頼性の向上にどのように貢献するかを調査する。
論文 参考訳(メタデータ) (2024-11-26T14:28:25Z) - OML: Open, Monetizable, and Loyal AI [39.63122342758896]
OML は Open, Monetizable, Loyal AI の略である。
OMLはAI開発を民主化するためのアプローチである。
私たちの研究の重要なイノベーションは、新たな科学分野であるAIネイティブ暗号の導入です。
論文 参考訳(メタデータ) (2024-11-01T18:46:03Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Generative AIの応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の影響の可能性は、潜在的なリスクに関する活発な議論を引き起こし、より厳格な規制を要求した。
この規制は、オープンソースのジェネレーティブAIの誕生する分野を危険にさらしている可能性が高い。
論文 参考訳(メタデータ) (2024-04-25T21:14:24Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
自律兵器、自動化された雇用損失、社会経済的不平等、データやアルゴリズムによる偏見、プライバシー侵害、ディープフェイクなど、人類にとってのAIリスクは数多く発生している。
社会的多様性、公平性、包摂性は、リスクを緩和し、価値を生み出し、社会正義を促進するAIの重要な成功要因と考えられている。
AIによる持続可能な未来に向けての旅では、優先事項としてAI倫理とガバナンスに取り組む必要があります。
論文 参考訳(メタデータ) (2022-09-28T22:23:10Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Rebuilding Trust: Queer in AI Approach to Artificial Intelligence Risk
Management [0.0]
信頼できるAIは、AIシステムとそのクリエイターに対する信頼が失われたり、そもそも存在しないため、重要なトピックになっている。
私たちは、信頼できるAI開発、デプロイメント、監視のフレームワークは、フェミニストと非エクスプロイト的デザインの原則の両方を取り入れなければならないと論じています。
論文 参考訳(メタデータ) (2021-09-21T21:22:58Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
本稿では、感情認識型AIの倫理的結果(道徳的・倫理的結果)を評価するためのガイドラインを提案する。
我々は,AI開発者による倫理的責任を分離し,そのようなAIをデプロイするエンティティをビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビ
最終的には研究者、開発者、オペレーター、規制当局、法執行機関への勧告で終わります。
論文 参考訳(メタデータ) (2021-07-29T03:57:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。