Weak-valued correlation functions: Insights and precise readout strategies
- URL: http://arxiv.org/abs/2306.04398v3
- Date: Sat, 11 May 2024 19:16:28 GMT
- Title: Weak-valued correlation functions: Insights and precise readout strategies
- Authors: Yuan Feng, Xi Chen, Yongcheng Ding,
- Abstract summary: The correlation function in quantum systems plays a vital role in decoding their properties and gaining insights into physical phenomena.
By defining weak-valued correlation function, we propose the basic insights and the universal methods for recording them on the apparatus through weak measurement.
- Score: 5.3876722808329935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The correlation function in quantum systems plays a vital role in decoding their properties and gaining insights into physical phenomena. Its interpretation corresponds to the propagation of particle excitations between space-time, similar in spirit to the idea of quantum weak measurement in terms of recording the system information by interaction. By defining weak-valued correlation function, we propose the basic insights and the universal methods for recording them on the apparatus through weak measurement. To demonstrate the feasibility of our approach, we perform numerical experiments of perturbed quantum harmonic oscillators, addressing the intricate interplay between the coupling strength and the number of ensemble copies. Additionally, we extend our protocol to the domain of quantum field theory, where joint weak values encode crucial information about the correlation function. Hopefully, this comprehensive investigation can advance our understanding of the fundamental nature of the correlation function and weak measurement in quantum theories.
Related papers
- Entanglement Structure of Non-Gaussian States and How to Measure It [0.0]
We present a protocol that constrains quantum states by experimentally measured correlation functions.
This method enables measurement of a quantum state's entanglement structure.
We show the protocol's usefulness in conjunction with current and forthcoming experimental capabilities.
arXiv Detail & Related papers (2024-07-16T18:00:01Z) - Sonification of Wigner functions: case study of intense light-matter interactions [0.3749861135832073]
Wigner function $rho_W(textbfr,textbfp)$ serves as a phase-space representation.
It might serve as a tool to express quantum systems intuitively, for example, by using sonification techniques.
arXiv Detail & Related papers (2024-03-18T21:34:58Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Data-driven discovery of statistically relevant information in quantum
simulators [0.0]
We present a theoretical framework for information extraction in synthetic quantum matter.
We demonstrate a system-agnostic approach to identify dominant degrees of freedom.
Our assumption-free approach can be immediately applied in a variety of experimental platforms.
arXiv Detail & Related papers (2023-07-19T15:20:11Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Aharonov-Bohm effect for confined matter in lattice gauge theories [0.0]
We study the dynamics of mesons residing in a ring-shaped lattice of mesoscopic size pierced by an effective magnetic field.
We find a new type of Aharonov-Bohm effect that goes beyond the particle-like effect and reflects the the features of the confining gauge potential.
arXiv Detail & Related papers (2023-04-25T10:51:42Z) - Shannon theory for quantum systems and beyond: information compression
for fermions [68.8204255655161]
We show that entanglement fidelity in the fermionic case is capable of evaluating the preservation of correlations.
We introduce a fermionic version of the source coding theorem showing that, as in the quantum case, the von Neumann entropy is the minimal rate for which a fermionic compression scheme exists.
arXiv Detail & Related papers (2021-06-09T10:19:18Z) - Delocalization of quantum information in long-range interacting systems [0.0]
We investigate the delocalization of quantum information in the nonequilibrium dynamics of the $XY$ spin chain withally decaying interactions.
Our findings give new insights into the dynamics, and structure of quantum information in many-body systems with long-range interactions.
arXiv Detail & Related papers (2021-05-13T15:02:09Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.