Entanglement Structure of Non-Gaussian States and How to Measure It
- URL: http://arxiv.org/abs/2407.12083v1
- Date: Tue, 16 Jul 2024 18:00:01 GMT
- Title: Entanglement Structure of Non-Gaussian States and How to Measure It
- Authors: Henry Froland, Torsten V. Zache, Robert Ott, Niklas Mueller,
- Abstract summary: We present a protocol that constrains quantum states by experimentally measured correlation functions.
This method enables measurement of a quantum state's entanglement structure.
We show the protocol's usefulness in conjunction with current and forthcoming experimental capabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapidly growing capabilities of quantum simulators to probe quantum many-body phenomena require new methods to characterize increasingly complex states. We present a protocol that constrains quantum states by experimentally measured correlation functions which only scales polynomially with system size. This method enables measurement of a quantum state's entanglement structure, opening a new route to study entanglement-related phenomena. Our approach extends Gaussian state parameterizations by systematically incorporating higher-order correlations. We show the protocol's usefulness in conjunction with current and forthcoming experimental capabilities, focusing on weakly interacting fermions as a proof of concept. Here, the lowest non-trivial expansion quantitatively predicts early time thermalization dynamics, including signaling the on-set of quantum chaos indicated by the entanglement Hamiltonian.
Related papers
- Unlocking Heisenberg Sensitivity with Sequential Weak Measurement Preparation [0.0]
We generate entangled spin states devoid of the necessity for non-linear spin interactions.
The metrological sensitivity of the resulting state surpasses the standard quantum limit.
Our findings introduce a novel method for generating large-scale, non-classical, entangled states.
arXiv Detail & Related papers (2024-03-09T16:27:15Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Adversarial Hamiltonian learning of quantum dots in a minimal Kitaev
chain [0.0]
We show an adversarial machine learning algorithm to determine the parameters of a quantum dot-based Kitaev chain.
We use the model to predict the parameters at which Majorana bound states are predicted to appear.
Our results yield a strategy to support Kitaev chain tuning that is scalable to longer chains.
arXiv Detail & Related papers (2023-04-21T09:55:05Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising
model to gauge theory, and beyond [3.079076817894202]
Measurements allow efficient preparation of interesting quantum many-body states with long-range entanglement.
We demonstrate that the so-called conformal quantum critical points can be obtained by performing general single-site measurements.
arXiv Detail & Related papers (2022-08-24T17:59:58Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Recovering quantum correlations in optical lattices from interaction
quenches [0.0]
Quantum simulations with ultra-cold atoms in optical lattices open up an exciting path towards understanding strongly interacting quantum systems.
Currently a direct measurement of local coherent currents is out of reach.
We show how to achieve that by measuring densities that are altered in response to quenches to non-interacting dynamics.
arXiv Detail & Related papers (2020-05-18T18:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.