Formulation of the Electric Vehicle Charging and Routing Problem for a
Hybrid Quantum-Classical Search Space Reduction Heuristic
- URL: http://arxiv.org/abs/2306.04414v2
- Date: Wed, 29 Nov 2023 09:26:14 GMT
- Title: Formulation of the Electric Vehicle Charging and Routing Problem for a
Hybrid Quantum-Classical Search Space Reduction Heuristic
- Authors: M. Garcia de Andoin, A. Bottarelli, S. Schmitt, I. Oregi, P. Hauke and
M. Sanz
- Abstract summary: We show how to exploit multilevel carriers of quantum information -- qudits -- for the construction of constrained quantum optimization algorithms.
We propose a hybrid classical quantum strategy that allows us to sample constrained solutions while greatly reducing the search space of the problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combinatorial optimization problems have attracted much interest in the
quantum computing community in the recent years as a potential testbed to
showcase quantum advantage. In this paper, we show how to exploit multilevel
carriers of quantum information -- qudits -- for the construction of algorithms
for constrained quantum optimization. These systems have been recently
introduced in the context of quantum optimization and they allow us to treat
more general problems than the ones usually mapped into qubit systems. In
particular, we propose a hybrid classical quantum heuristic strategy that
allows us to sample constrained solutions while greatly reducing the search
space of the problem, thus optimizing the use of fewer quantum resources. As an
example, we focus on the Electric Vehicle Charging and Routing Problem (EVCRP).
We translate the classical problem and map it into a quantum system, obtaining
promising results on a toy example which shows the validity of our technique.
Related papers
- State-Averaged Orbital-Optimized VQE: A quantum algorithm for the
democratic description of ground and excited electronic states [0.0]
The SA-OO-VQE package aims to answer both problems with its hybrid quantum-classical conception based on a typical Variational Quantum Eigensolver approach.
The SA-OO-VQE has the ability to treat degenerate (or quasi-degenerate) states on the same footing, thus avoiding known numerical optimization problems around avoided crossings or conical intersections.
arXiv Detail & Related papers (2024-01-22T12:16:37Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - NP-hard but no longer hard to solve? Using quantum computing to tackle
optimization problems [1.1470070927586016]
We discuss the field of quantum optimization where we solve optimisation problems using quantum computers.
We demonstrate this through a proper use case and discuss the current quality of quantum computers.
We conclude with discussion on some recent quantum optimization breakthroughs and the current status and future directions.
arXiv Detail & Related papers (2022-12-21T12:56:37Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Limitations of optimization algorithms on noisy quantum devices [0.0]
We present a transparent way of comparing classical algorithms to quantum ones running on near-term quantum devices.
Our approach is based on the combination of entropic inequalities that determine how fast the quantum state converges to the fixed point of the noise model.
arXiv Detail & Related papers (2020-09-11T17:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.