NP-hard but no longer hard to solve? Using quantum computing to tackle
optimization problems
- URL: http://arxiv.org/abs/2212.10990v1
- Date: Wed, 21 Dec 2022 12:56:37 GMT
- Title: NP-hard but no longer hard to solve? Using quantum computing to tackle
optimization problems
- Authors: Rhonda Au-Yeung, Nicholas Chancellor, and Pascal Halffmann
- Abstract summary: We discuss the field of quantum optimization where we solve optimisation problems using quantum computers.
We demonstrate this through a proper use case and discuss the current quality of quantum computers.
We conclude with discussion on some recent quantum optimization breakthroughs and the current status and future directions.
- Score: 1.1470070927586016
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the last decade, public and industrial research funding has moved quantum
computing from the early promises of Shor's algorithm through experiments to
the era of noisy intermediate scale quantum devices (NISQ) for solving
real-world problems. It is likely that quantum methods can efficiently solve
certain (NP-)hard optimization problems where classical approaches fail. In our
perspective, we examine the field of quantum optimization where we solve
optimisation problems using quantum computers. We demonstrate this through a
proper use case and discuss the current quality of quantum computers, their
solver capabilities, and benchmarking difficulties. Although we show a
proof-of-concept rather than a full benchmark, we use the results to emphasize
the importance of using appropriate metrics when comparing quantum and
classical methods. We conclude with discussion on some recent quantum
optimization breakthroughs and the current status and future directions.
Related papers
- Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Formulation of the Electric Vehicle Charging and Routing Problem for a
Hybrid Quantum-Classical Search Space Reduction Heuristic [0.0]
We show how to exploit multilevel carriers of quantum information -- qudits -- for the construction of constrained quantum optimization algorithms.
We propose a hybrid classical quantum strategy that allows us to sample constrained solutions while greatly reducing the search space of the problem.
arXiv Detail & Related papers (2023-06-07T13:16:15Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
We develop an Inexact Infeasible Quantum Interior Point Method to solve linear optimization problems.
We also discuss how can we get an exact solution by Iterative Refinement without excessive time of quantum solvers.
arXiv Detail & Related papers (2022-05-02T21:30:56Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
arXiv Detail & Related papers (2021-07-22T08:12:49Z) - Limitations of optimization algorithms on noisy quantum devices [0.0]
We present a transparent way of comparing classical algorithms to quantum ones running on near-term quantum devices.
Our approach is based on the combination of entropic inequalities that determine how fast the quantum state converges to the fixed point of the noise model.
arXiv Detail & Related papers (2020-09-11T17:07:26Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.