Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics
- URL: http://arxiv.org/abs/2409.10972v1
- Date: Tue, 17 Sep 2024 08:12:38 GMT
- Title: Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics
- Authors: Sawan Kumar, Rajdip Nayek, Souvik Chakraborty,
- Abstract summary: This paper introduces a novel Gaussian Process (GP) based neural operator for solving parametric differential equations.
We propose a neural operator-embedded kernel'' wherein the GP kernel is formulated in the latent space learned using a neural operator.
Our results highlight the efficacy of this framework in solving complex PDEs while maintaining robustness in uncertainty estimation.
- Score: 8.528817025440746
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing demand for accurate, efficient, and scalable solutions in computational mechanics highlights the need for advanced operator learning algorithms that can efficiently handle large datasets while providing reliable uncertainty quantification. This paper introduces a novel Gaussian Process (GP) based neural operator for solving parametric differential equations. The approach proposed leverages the expressive capability of deterministic neural operators and the uncertainty awareness of conventional GP. In particular, we propose a ``neural operator-embedded kernel'' wherein the GP kernel is formulated in the latent space learned using a neural operator. Further, we exploit a stochastic dual descent (SDD) algorithm for simultaneously training the neural operator parameters and the GP hyperparameters. Our approach addresses the (a) resolution dependence and (b) cubic complexity of traditional GP models, allowing for input-resolution independence and scalability in high-dimensional and non-linear parametric systems, such as those encountered in computational mechanics. We apply our method to a range of non-linear parametric partial differential equations (PDEs) and demonstrate its superiority in both computational efficiency and accuracy compared to standard GP models and wavelet neural operators. Our experimental results highlight the efficacy of this framework in solving complex PDEs while maintaining robustness in uncertainty estimation, positioning it as a scalable and reliable operator-learning algorithm for computational mechanics.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Kernel Neural Operators (KNOs) for Scalable, Memory-efficient, Geometrically-flexible Operator Learning [15.050519590538634]
The Kernel Neural Operator (KNO) is a novel operator learning technique.
It uses deep kernel-based integral operators in conjunction with quadrature for function-space approximation of operators.
KNOs represent a new paradigm of low-memory, geometrically-flexible, deep operator learning.
arXiv Detail & Related papers (2024-06-30T19:28:12Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
We introduce a new framework for approximate Bayesian uncertainty quantification in neural operators.
Our approach can be interpreted as a probabilistic analogue of the concept of currying from functional programming.
We showcase the efficacy of our approach through applications to different types of partial differential equations.
arXiv Detail & Related papers (2024-06-07T16:43:54Z) - Neural Operator induced Gaussian Process framework for probabilistic solution of parametric partial differential equations [8.528817025440746]
We propose a novel Neural Operator-induced Gaussian Process (NOGaP) for partial differential equations.
The proposed framework leads to improved prediction accuracy and offers a quantifiable measure of uncertainty.
The results demonstrate superior accuracy and expected uncertainty characteristics, suggesting the promising potential of NOGaP.
arXiv Detail & Related papers (2024-04-24T03:16:48Z) - Neural optimal controller for stochastic systems via pathwise HJB
operator [2.8928489670253277]
The aim of this work is to develop deep learning-based algorithms for high-dimensional control problems based on physics-informed learning and dynamic programming.
We introduce a pathwise operator associated with the HJB equation so that we can define a problem of physics-informed learning.
According to whether the optimal control has an explicit representation, two numerical methods are proposed to solve the physics-informed learning problem.
arXiv Detail & Related papers (2024-02-23T20:19:06Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - The Parametric Complexity of Operator Learning [6.800286371280922]
This paper aims to prove that for general classes of operators which are characterized only by their $Cr$- or Lipschitz-regularity, operator learning suffers from a curse of parametric complexity''
The second contribution of the paper is to prove that this general curse can be overcome for solution operators defined by the Hamilton-Jacobi equation.
A novel neural operator architecture is introduced, termed HJ-Net, which explicitly takes into account characteristic information of the underlying Hamiltonian system.
arXiv Detail & Related papers (2023-06-28T05:02:03Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.