論文の概要: DiffusionShield: A Watermark for Copyright Protection against Generative
Diffusion Models
- arxiv url: http://arxiv.org/abs/2306.04642v1
- Date: Thu, 25 May 2023 11:59:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-11 13:26:26.658947
- Title: DiffusionShield: A Watermark for Copyright Protection against Generative
Diffusion Models
- Title(参考訳): DiffusionShield: 生成拡散モデルに対する著作権保護のための透かし
- Authors: Yingqian Cui, Jie Ren, Han Xu, Pengfei He, Hui Liu, Lichao Sun,
Jiliang Tang
- Abstract要約: DiffusionShieldは、所有権情報を認識不能な透かしにエンコードし、画像に注入することで、GDMによる著作権侵害から画像を保護する。
DiffusionShieldは透かしの均一性と共同最適化法により、元の画像の歪みが低く、透かし検出性能が高く、長文を埋め込むことができる。
- 参考スコア(独自算出の注目度): 50.05935787706284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Generative Diffusion Models (GDMs) have showcased their remarkable
capabilities in learning and generating images. A large community of GDMs has
naturally emerged, further promoting the diversified applications of GDMs in
various fields. However, this unrestricted proliferation has raised serious
concerns about copyright protection. For example, artists including painters
and photographers are becoming increasingly concerned that GDMs could
effortlessly replicate their unique creative works without authorization. In
response to these challenges, we introduce a novel watermarking scheme,
DiffusionShield, tailored for GDMs. DiffusionShield protects images from
copyright infringement by GDMs through encoding the ownership information into
an imperceptible watermark and injecting it into the images. Its watermark can
be easily learned by GDMs and will be reproduced in their generated images. By
detecting the watermark from generated images, copyright infringement can be
exposed with evidence. Benefiting from the uniformity of the watermarks and the
joint optimization method, DiffusionShield ensures low distortion of the
original image, high watermark detection performance, and the ability to embed
lengthy messages. We conduct rigorous and comprehensive experiments to show the
effectiveness of DiffusionShield in defending against infringement by GDMs and
its superiority over traditional watermarking methods.
- Abstract(参考訳): 近年,GDM(Generative Diffusion Models)は,画像の学習と生成において顕著な能力を示した。
GDMの大規模なコミュニティが自然に出現し、様々な分野におけるGDMの多様化が促進されている。
しかし、この制限のない増殖は著作権保護に関する深刻な懸念を引き起こした。
例えば、画家や写真家などのアーティストは、GDMが許可なく独自のクリエイティブ作品を自由に複製できるのではないかと懸念している。
これらの課題に対応して,GDMに適した新しい透かし方式DiffusionShieldを導入する。
DiffusionShieldは、所有権情報を認識不能な透かしにエンコードして画像に注入することで、GDMによる著作権侵害から画像を保護する。
その透かしはGDMによって容易に学習でき、生成した画像で再現される。
生成された画像から透かしを検出することにより、著作権侵害を証拠として露呈することができる。
diffusionshieldは、透かしの均一性と統合最適化方法の利点により、元の画像の歪みが少なく、透かし検出性能が高く、長いメッセージを埋め込むことができる。
我々は,GDMによる侵害防止におけるDiffusionShieldの有効性と従来の透かし法よりも優れていることを示すために,厳密で包括的な実験を行った。
関連論文リスト
- AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
拡散モデルは高品質な画像の生成において顕著な成功を収めた。
最近の研究は、SDモデルがポストホック法医学のための透かし付きコンテンツを出力できるようにすることを目的としている。
このシナリオにおける最初の実装としてtextttmethod を提案する。
論文 参考訳(メタデータ) (2024-05-18T01:25:47Z) - DiffuseTrace: A Transparent and Flexible Watermarking Scheme for Latent Diffusion Model [15.982765272033058]
潜在拡散モデル(LDM)は幅広い応用を可能にするが、違法利用に関する倫理的懸念を提起する。
DiffuseTraceと呼ばれる新しいテクニックは、すべての生成された画像に見えない透かしを埋め込んで、将来的な検出を意味づける。
論文 参考訳(メタデータ) (2024-05-04T15:32:57Z) - Watermark-embedded Adversarial Examples for Copyright Protection against Diffusion Models [10.993094140231667]
拡散モデル(Diffusion Models)は、未承認の作品を模倣し、著作権問題を引き起こす可能性があるという懸念がある。
本稿では,個人用透かしを敵対例の生成に組み込む新しい枠組みを提案する。
この作品は、DMベースの模倣から著作権を保護するためのシンプルだが強力な方法を提供する。
論文 参考訳(メタデータ) (2024-04-15T01:27:07Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
著作権保護と不適切なコンテンツ生成は、拡散モデルの実装に課題をもたらす。
本研究では,性能ロスレスかつトレーニング不要な拡散モデル透かし手法を提案する。
論文 参考訳(メタデータ) (2024-04-07T13:30:10Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
テキスト・画像拡散モデルの微調整に適した透かしシステムであるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
論文 参考訳(メタデータ) (2023-10-03T19:50:08Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisibleの透かしは、所有者によってのみ検出可能な隠されたメッセージを埋め込むことで、画像の著作権を保護する。
我々は、これらの見えない透かしを取り除くために、再生攻撃のファミリーを提案する。
提案手法は,まず画像にランダムノイズを加えて透かしを破壊し,画像を再構成する。
論文 参考訳(メタデータ) (2023-06-02T23:29:28Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
生成モデルのアウトプットを透かしは、著作権をトレースし、AI生成コンテンツによる潜在的な害を防ぐ重要なテクニックである。
本稿では,拡散モデル出力を頑健にフィンガープリントするTree-Ring Watermarkingという新しい手法を提案する。
私たちの透かしは画像空間に意味的に隠れており、現在デプロイされている透かしよりもはるかに堅牢です。
論文 参考訳(メタデータ) (2023-05-31T17:00:31Z) - A Recipe for Watermarking Diffusion Models [53.456012264767914]
拡散モデル(DM)は、生成タスクに有利な可能性を証明している。
フォトリアリスティック画像の生成や編集など、DMを下流のアプリケーションに組み込むことには幅広い関心がある。
しかし、DMの実践的な展開と前例のない力は、著作権保護や生成されたコンテンツの監視を含む法的問題を提起する。
ウォーターマーキングは著作権保護とコンテンツ監視のための実証済みのソリューションであるが、DMの文献では過小評価されている。
論文 参考訳(メタデータ) (2023-03-17T17:25:10Z) - Supervised GAN Watermarking for Intellectual Property Protection [33.827150843939094]
本稿では,GAN(Generative Adversarial Networks)のための透かし手法を提案する。
目的は、GANモデルで生成された画像が見えない透かし(署名)を含むように、GANモデルに透かしを付けることである。
その結果,本手法は生成画像内に見えない透かしを効果的に埋め込むことができることがわかった。
論文 参考訳(メタデータ) (2022-09-07T20:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。