論文の概要: SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2502.10495v1
- Date: Fri, 14 Feb 2025 16:55:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:17:24.372558
- Title: SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models
- Title(参考訳): SWA-LDM:潜在拡散モデルのための定常透かしに向けて
- Authors: Zhonghao Yang, Linye Lyu, Xuanhang Chang, Daojing He, YU LI,
- Abstract要約: 埋め込みプロセスのランダム化によって透かしを強化する新しい手法であるSWA-LDMを紹介する。
提案する透かし攻撃は,既存の潜水式透かし法の本質的脆弱性を明らかにする。
この研究は、LDM生成画像の不正使用に対する保護に向けた重要なステップである。
- 参考スコア(独自算出の注目度): 11.906245347904289
- License:
- Abstract: In the rapidly evolving landscape of image generation, Latent Diffusion Models (LDMs) have emerged as powerful tools, enabling the creation of highly realistic images. However, this advancement raises significant concerns regarding copyright infringement and the potential misuse of generated content. Current watermarking techniques employed in LDMs often embed constant signals to the generated images that compromise their stealthiness, making them vulnerable to detection by malicious attackers. In this paper, we introduce SWA-LDM, a novel approach that enhances watermarking by randomizing the embedding process, effectively eliminating detectable patterns while preserving image quality and robustness. Our proposed watermark presence attack reveals the inherent vulnerabilities of existing latent-based watermarking methods, demonstrating how easily these can be exposed. Through comprehensive experiments, we validate that SWA-LDM not only fortifies watermark stealthiness but also maintains competitive performance in watermark robustness and visual fidelity. This work represents a pivotal step towards securing LDM-generated images against unauthorized use, ensuring both copyright protection and content integrity in an era where digital image authenticity is paramount.
- Abstract(参考訳): 画像生成の急速な発展の中で、潜在拡散モデル(LDM)は強力なツールとして登場し、非常にリアルな画像の作成を可能にしている。
しかし、この進歩は、著作権侵害と生成されたコンテンツの潜在的な誤用に関する重大な懸念を提起する。
LDMで使われている現在の透かし技術は、しばしば、そのステルス性を損なう生成画像に一定のシグナルを埋め込んでおり、悪意のある攻撃者による検出に脆弱である。
本稿では,画像品質とロバスト性を保ちつつ,検出可能なパターンを効果的に排除し,埋め込みプロセスのランダム化によって透かしを強化する新しいアプローチであるSWA-LDMを紹介する。
提案した透かし攻撃は,既存の潜水型透かし法の本質的脆弱性を明らかにし,それらがどの程度容易に露出できるかを実証する。
総合的な実験により,SWA-LDMは透かしのステルス性だけでなく,透かしの堅牢性や視力の競争性能も維持できることを確認した。
本研究は,デジタル画像の信頼性が最重要である時代に,著作権保護とコンテンツ整合性を両立させ,LDM生成画像の不正使用に対する保護に向けた重要なステップである。
関連論文リスト
- Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
安定拡散のようなテキストと画像の拡散モデルは、高品質な画像を生成するのに例外的な可能性を示している。
近年の研究では、これらのモデルのトレーニングに不正データを使用することが懸念されており、知的財産権侵害やプライバシー侵害につながる可能性がある。
本稿では、拡散過程を利用して保護された入力に対して制御された画像を生成するRATTANを提案する。
論文 参考訳(メタデータ) (2024-11-22T22:28:19Z) - ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
既存の透かし手法は、堅牢性と隠蔽のバランスをとるという課題に直面している。
本稿では, 透かしを積極的に隠蔽し, より強力な透かしの埋め込みを可能にするための透かし隠蔽法を提案する。
様々な拡散モデルの実験では、画像改ざんであっても透かしが検証可能であることが示されている。
論文 参考訳(メタデータ) (2024-11-06T12:14:23Z) - IWN: Image Watermarking Based on Idempotency [0.0]
本稿では,画像透かし処理におけるイデオロシティの導入の可能性について検討する。
カラー画像透かしの回復品質向上に焦点をあてたモデルでは,イデオロシティを活用し,画像の可逆性を向上する。
論文 参考訳(メタデータ) (2024-09-29T01:29:34Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
安定拡散(SD)モデルは一般的に画像合成とパーソナライズされた編集の分野で栄えている。
AIが作成したコンテンツを公開プラットフォームに公開することで、法的および倫理的リスクが高まる可能性がある。
本研究では,透かしを認識不能な構造に適応させる,安全かつ高追従性安定拡散フレームワーク(SafeSD)を提案する。
論文 参考訳(メタデータ) (2024-07-18T05:53:17Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
拡散モデルは高品質な画像の生成において顕著な成功を収めた。
最近の研究は、SDモデルがポストホック法医学のための透かし付きコンテンツを出力できるようにすることを目的としている。
このシナリオにおける最初の実装としてtextttmethod を提案する。
論文 参考訳(メタデータ) (2024-05-18T01:25:47Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
テキスト・画像拡散モデルの微調整に適した透かしシステムであるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
論文 参考訳(メタデータ) (2023-10-03T19:50:08Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。