論文の概要: On the Use of Generative Models in Observational Causal Analysis
- arxiv url: http://arxiv.org/abs/2306.04792v1
- Date: Wed, 7 Jun 2023 21:29:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 17:21:31.023316
- Title: On the Use of Generative Models in Observational Causal Analysis
- Title(参考訳): 観測因果解析における生成モデルの利用について
- Authors: Nimrod Megiddo
- Abstract要約: 仮説生成モデルを用いて観測データの因果解析を行った。
このモデルは単一の観測可能な分布を記述しており、観測された分布から逸脱する介入の影響の連鎖を表現できない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of a hypothetical generative model was been suggested for causal
analysis of observational data. The very assumption of a particular model is a
commitment to a certain set of variables and therefore to a certain set of
possible causes. Estimating the joint probability distribution of can be useful
for predicting values of variables in view of the observed values of others,
but it is not sufficient for inferring causal relationships. The model
describes a single observable distribution and cannot a chain of effects of
intervention that deviate from the observed distribution.
- Abstract(参考訳): 観測データの因果分析には仮説生成モデルの利用が提案されている。
特定のモデルのまさに仮定は、ある変数のセットに対するコミットメントであり、それゆえ特定の原因のセットへのコミットメントである。
共同確率分布の推定は、他者の観測値の観点から変数の値を予測するのに有用であるが、因果関係を推定するには不十分である。
このモデルは単一の観測可能な分布を記述しており、観測された分布から逸脱する介入の連鎖はできない。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Invariance & Causal Representation Learning: Prospects and Limitations [15.935205681539145]
因果モデルでは、与えられたメカニズムは他のメカニズムの変化に不変であると仮定される。
因果変数を同定するには不変性だけでは不十分であることを示す。
論文 参考訳(メタデータ) (2023-12-06T16:16:31Z) - Model-agnostic variable importance for predictive uncertainty: an entropy-based approach [1.912429179274357]
既存の説明可能性の手法が不確実性を考慮したモデルにどのように拡張できるかを示す。
我々は、不確実性の原因とモデル性能への影響の両方を理解するために、これらのアプローチの有用性を実証する。
論文 参考訳(メタデータ) (2023-10-19T15:51:23Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Restricted Hidden Cardinality Constraints in Causal Models [0.0]
観測されていない変数を持つ因果モデルは、観測された変数上の分布に非自明な制約を課す。
我々は、観測されていない変数が既知の濃度を持つことを約束する因果モデルを考える。
論文 参考訳(メタデータ) (2021-09-13T00:52:08Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。