Degraded Polygons Raise Fundamental Questions of Neural Network Perception
- URL: http://arxiv.org/abs/2306.04955v2
- Date: Thu, 17 Oct 2024 00:27:09 GMT
- Title: Degraded Polygons Raise Fundamental Questions of Neural Network Perception
- Authors: Leonard Tang, Dan Ley,
- Abstract summary: We revisit the task of recovering images under degradation, first introduced over 30 years ago in the Recognition-by-Components theory of human vision.
We implement the Automated Shape Recoverability Test for rapidly generating large-scale datasets of perimeter-degraded regular polygons.
We find that neural networks' behavior on this simple task conflicts with human behavior.
- Score: 5.423100066629618
- License:
- Abstract: It is well-known that modern computer vision systems often exhibit behaviors misaligned with those of humans: from adversarial attacks to image corruptions, deep learning vision models suffer in a variety of settings that humans capably handle. In light of these phenomena, here we introduce another, orthogonal perspective studying the human-machine vision gap. We revisit the task of recovering images under degradation, first introduced over 30 years ago in the Recognition-by-Components theory of human vision. Specifically, we study the performance and behavior of neural networks on the seemingly simple task of classifying regular polygons at varying orders of degradation along their perimeters. To this end, we implement the Automated Shape Recoverability Test for rapidly generating large-scale datasets of perimeter-degraded regular polygons, modernizing the historically manual creation of image recoverability experiments. We then investigate the capacity of neural networks to recognize and recover such degraded shapes when initialized with different priors. Ultimately, we find that neural networks' behavior on this simple task conflicts with human behavior, raising a fundamental question of the robustness and learning capabilities of modern computer vision models.
Related papers
- A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Connecting metrics for shape-texture knowledge in computer vision [1.7785095623975342]
Deep neural networks remain brittle and susceptible to many changes in the image that do not cause humans to misclassify images.
Part of this different behavior may be explained by the type of features humans and deep neural networks use in vision tasks.
arXiv Detail & Related papers (2023-01-25T14:37:42Z) - Guiding Visual Attention in Deep Convolutional Neural Networks Based on
Human Eye Movements [0.0]
Deep Convolutional Neural Networks (DCNNs) were originally inspired by principles of biological vision.
Recent advances in deep learning seem to decrease this similarity.
We investigate a purely data-driven approach to obtain useful models.
arXiv Detail & Related papers (2022-06-21T17:59:23Z) - Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises [7.689542442882423]
We designed a dual-stream vision model inspired by the human brain.
This model features retina-like input layers and includes two streams: one determining the next point of focus (the fixation), while the other interprets the visuals surrounding the fixation.
We evaluated this model against various benchmarks in terms of object recognition, gaze behavior and adversarial robustness.
arXiv Detail & Related papers (2022-06-15T03:44:42Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Robustness of Humans and Machines on Object Recognition with Extreme
Image Transformations [0.0]
We introduce a novel set of image transforms and evaluate humans and networks on an object recognition task.
We found performance for a few common networks quickly decreases while humans are able to recognize objects with a high accuracy.
arXiv Detail & Related papers (2022-05-09T17:15:54Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
Recent advances in machine learning have created increasing interest in solving visual computing problems using coordinate-based neural networks.
neural fields have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation.
This report provides context, mathematical grounding, and an extensive review of literature on neural fields.
arXiv Detail & Related papers (2021-11-22T18:57:51Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
We propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks.
We evaluate our method in the context of visual-control learning of drones over a series of complex tasks.
arXiv Detail & Related papers (2021-06-15T17:45:32Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Seeing eye-to-eye? A comparison of object recognition performance in
humans and deep convolutional neural networks under image manipulation [0.0]
This study aims towards a behavioral comparison of visual core object recognition performance between humans and feedforward neural networks.
Analyses of accuracy revealed that humans not only outperform DCNNs on all conditions, but also display significantly greater robustness towards shape and most notably color alterations.
arXiv Detail & Related papers (2020-07-13T10:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.