論文の概要: Enhancing Robustness of AI Offensive Code Generators via Data
Augmentation
- arxiv url: http://arxiv.org/abs/2306.05079v1
- Date: Thu, 8 Jun 2023 10:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 14:53:39.964934
- Title: Enhancing Robustness of AI Offensive Code Generators via Data
Augmentation
- Title(参考訳): データ拡張によるAI攻撃コードジェネレータのロバスト性向上
- Authors: Cristina Improta, Pietro Liguori, Roberto Natella, Bojan Cukic and
Domenico Cotroneo
- Abstract要約: 我々は、AI攻撃コードジェネレータの性能にどの程度の摂動がどのような影響を及ぼすかを分析した。
実験により、コードジェネレータの性能は、NL記述の摂動の影響が大きいことが示された。
- 参考スコア(独自算出の注目度): 1.8899300124593648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present a method to add perturbations to the code
descriptions, i.e., new inputs in natural language (NL) from well-intentioned
developers, in the context of security-oriented code, and analyze how and to
what extent perturbations affect the performance of AI offensive code
generators. Our experiments show that the performance of the code generators is
highly affected by perturbations in the NL descriptions. To enhance the
robustness of the code generators, we use the method to perform data
augmentation, i.e., to increase the variability and diversity of the training
data, proving its effectiveness against both perturbed and non-perturbed code
descriptions.
- Abstract(参考訳): 本研究では、セキュリティ指向のコードにおいて、意図された開発者による自然言語(NL)の新たな入力をコード記述に追加し、AI攻撃コードジェネレータの性能にどの程度の摂動がどのような影響を及ぼすかを分析する方法を提案する。
実験の結果,コードジェネレータの性能はNL記述の摂動の影響が大きいことがわかった。
コードジェネレータのロバスト性を高めるため,この手法を用いてデータ拡張を行い,トレーニングデータの多様性と多様性を向上し,摂動コード記述と非摂動コード記述の両方に対する有効性を証明した。
関連論文リスト
- Impact of Code Transformation on Detection of Smart Contract Vulnerabilities [0.0]
本稿では,スマートコントラクト脆弱性データセットの量と品質を改善する方法を提案する。
このアプローチは、セマンティックな意味を変えることなくソースコード構造を変更するテクニックである、セマンティックな保存コード変換を中心に展開されている。
改善された結果によると、新たに生成された脆弱性の多くはツールをバイパスでき、偽報告率は最大100%になる。
論文 参考訳(メタデータ) (2024-10-29T03:08:25Z) - Enhancing AI-based Generation of Software Exploits with Contextual Information [9.327315119028809]
この研究では、実際のシェルコードからなるデータセットを使用して、さまざまなシナリオでモデルを評価する。
実験は、不完全記述に対するモデルの弾力性、文脈を活用して精度を高める能力、無関係な情報を識別する能力を評価するように設計されている。
モデルは不要なコンテキストをフィルタリングし、攻撃的なセキュリティコードの生成において高いレベルの精度を維持する能力を示している。
論文 参考訳(メタデータ) (2024-08-05T11:52:34Z) - DeVAIC: A Tool for Security Assessment of AI-generated Code [5.383910843560784]
DeVAIC (Detection of Vulnerabilities in AI Generated Code)は、AI生成のPythonコードのセキュリティを評価するツールである。
論文 参考訳(メタデータ) (2024-04-11T08:27:23Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named
Entity Recognition [67.96794382040547]
$LLM-DA$は、数発のNERタスクのために、大きな言語モデル(LLM)に基づいた、新しいデータ拡張テクニックである。
提案手法では,14のコンテキスト書き換え戦略を採用し,同一タイプのエンティティ置換を設計し,ロバスト性を高めるためにノイズ注入を導入する。
論文 参考訳(メタデータ) (2024-02-22T14:19:56Z) - Fortifying Ethical Boundaries in AI: Advanced Strategies for Enhancing
Security in Large Language Models [3.9490749767170636]
大規模言語モデル(LLM)は、テキスト生成、翻訳、質問応答タスクに革命をもたらした。
広く使われているにもかかわらず、LLMはモデルに不適切な反応を強いられる場合の倫理的ジレンマのような課題を提示している。
本稿では,1)ユーザ入力からセンシティブな語彙をフィルタリングして非倫理的応答を防ぐ,2)"プライソンブレイク"シナリオにつながる可能性のあるインタラクションを停止するロールプレイングを検出する,4)マルチモデル大規模言語モデル(MLLM)のような様々なLLM派生語に拡張する,という課題に対処する。
論文 参考訳(メタデータ) (2024-01-27T08:09:33Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
我々は,大規模な言語モデルであるCodeGen2を利用した多目的コード脆弱性解析システム texttSecRepair を導入する。
そこで本研究では,LLMを用いた脆弱性解析に適した命令ベースデータセットを提案する。
GitHub上の6つのオープンソースIoTオペレーティングシステムにおいて、ゼロデイとNデイの脆弱性を特定します。
論文 参考訳(メタデータ) (2024-01-07T02:46:39Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation [91.16551253297588]
Counterfactual Generation via Retrieval and Editing (CORE) は、トレーニングのための多様な反事実摂動を生成するための検索強化された生成フレームワークである。
COREはまず、学習されたバイエンコーダを用いて、タスク関連未ラベルテキストコーパス上で密集した検索を行う。
COREはこれらを、反ファクト編集のために、数ショットの学習機能を備えた大規模な言語モデルへのプロンプトに組み込む。
論文 参考訳(メタデータ) (2022-10-10T17:45:38Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Contextualized Perturbation for Textual Adversarial Attack [56.370304308573274]
逆例は自然言語処理(NLP)モデルの脆弱性を明らかにする。
本稿では,フロートおよび文法的出力を生成するContextualized AdversaRial Example生成モデルであるCLAREを提案する。
論文 参考訳(メタデータ) (2020-09-16T06:53:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。