論文の概要: Improving Automated Secure Code Reviews: A Synthetic Dataset for Code Vulnerability Flaws
- arxiv url: http://arxiv.org/abs/2504.16310v1
- Date: Tue, 22 Apr 2025 23:07:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.955912
- Title: Improving Automated Secure Code Reviews: A Synthetic Dataset for Code Vulnerability Flaws
- Title(参考訳): セキュアなコードレビューを自動化する - コードの脆弱性検出のための合成データセット
- Authors: Leonardo Centellas-Claros, Juan J. Alonso-Lecaros, Juan Pablo Sandoval Alcocer, Andres Neyem,
- Abstract要約: 本稿では,セキュリティ欠陥について特にコメントする脆弱性中心のレビューからなる合成データセットの作成を提案する。
弊社のアプローチでは,Large Language Models(LLMs)を利用して,脆弱性に対する人間的なコードレビューコメントを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automation of code reviews using AI models has garnered substantial attention in the software engineering community as a strategy to reduce the cost and effort associated with traditional peer review processes. These models are typically trained on extensive datasets of real-world code reviews that address diverse software development concerns, including testing, refactoring, bug fixes, performance optimization, and maintainability improvements. However, a notable limitation of these datasets is the under representation of code vulnerabilities, critical flaws that pose significant security risks, with security-focused reviews comprising a small fraction of the data. This scarcity of vulnerability-specific data restricts the effectiveness of AI models in identifying and commenting on security-critical code. To address this issue, we propose the creation of a synthetic dataset consisting of vulnerability-focused reviews that specifically comment on security flaws. Our approach leverages Large Language Models (LLMs) to generate human-like code review comments for vulnerabilities, using insights derived from code differences and commit messages. To evaluate the usefulness of the generated synthetic dataset, we plan to use it to fine-tune three existing code review models. We anticipate that the synthetic dataset will improve the performance of the original code review models.
- Abstract(参考訳): AIモデルを使用したコードレビューの自動化は、従来のピアレビュープロセスに関連するコストと労力を削減する戦略として、ソフトウェアエンジニアリングコミュニティにおいて大きな注目を集めている。
これらのモデルは一般的に、テスト、リファクタリング、バグ修正、パフォーマンスの最適化、保守性の改善など、さまざまなソフトウェア開発上の問題に対処する、現実世界のコードレビューの広範なデータセットに基づいてトレーニングされている。
しかし、これらのデータセットの顕著な制限は、コードの脆弱性、重大なセキュリティリスクを引き起こす重大な欠陥、少数のデータからなるセキュリティ中心のレビューである。
この脆弱性固有のデータの不足は、セキュリティクリティカルなコードの識別とコメントにおいて、AIモデルの有効性を制限する。
この問題に対処するため,脆弱性に焦点をあてたレビューを対象とする合成データセットの作成を提案する。
当社のアプローチでは,Large Language Models(LLM)を活用して,コードの違いやコミットメッセージから得られた洞察を用いて,脆弱性に対する人間的なコードレビューコメントを生成する。
生成した合成データセットの有用性を評価するため,既存の3つのコードレビューモデルを微調整する。
我々は、合成データセットが元のコードレビューモデルの性能を改善することを期待する。
関連論文リスト
- Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning [59.25951947621526]
本稿では,既存の符号化ベンチマークをスコアとランキングデータセットに変換して,合成検証の有効性を評価する手法を提案する。
我々は4つの新しいベンチマーク(HE-R, HE-R+, MBPP-R, MBPP-R+)を公表し, 標準, 推論, 報酬に基づくLCMを用いて合成検証手法を解析した。
実験の結果, 推論はテストケースの生成を著しく改善し, テストケースのスケーリングによって検証精度が向上することがわかった。
論文 参考訳(メタデータ) (2025-02-19T15:32:11Z) - Harnessing Large Language Models for Curated Code Reviews [2.5944208050492183]
コードレビューでは、構造化され、関連するコメントを生成することは、コードの問題を識別し、正確なコード変更を容易にするために不可欠である。
既存のコードレビューデータセットは、しばしば騒々しく、未解決であり、AIモデルの学習可能性に制限を課している。
本稿では,最大規模の公開コードレビューデータセットの品質向上を目的としたキュレーションパイプラインを提案する。
論文 参考訳(メタデータ) (2025-02-05T18:15:09Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval [20.959848710829878]
大規模言語モデル(LLM)は、コード生成とコード修復に大きな進歩をもたらした。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を必然的に伝播するリスクを増大させる。
我々は,コードLLMのセキュリティ面を正確に評価し,拡張することを目的とした総合的研究を提案する。
論文 参考訳(メタデータ) (2024-07-02T16:13:21Z) - Vulnerability Detection with Code Language Models: How Far Are We? [40.455600722638906]
PrimeVulは、脆弱性検出のためのコードLMのトレーニングと評価のための新しいデータセットである。
これは、人間の検証されたベンチマークに匹敵するラベルの精度を達成する、新しいデータラベリング技術を含んでいる。
また、厳密なデータ重複解消戦略と時系列データ分割戦略を実装して、データの漏洩問題を軽減している。
論文 参考訳(メタデータ) (2024-03-27T14:34:29Z) - Enhancing Large Language Models for Secure Code Generation: A
Dataset-driven Study on Vulnerability Mitigation [24.668682498171776]
大規模言語モデル(LLM)はコード生成に大きな進歩をもたらし、初心者と経験豊富な開発者の両方に恩恵を与えている。
しかし、GitHubのようなオープンソースのリポジトリから無防備なデータを使用したトレーニングは、セキュリティ上の脆弱性を不注意に伝播するリスクをもたらす。
本稿では,ソフトウェアセキュリティの観点からのLLMの評価と拡張に焦点をあてた総合的研究について述べる。
論文 参考訳(メタデータ) (2023-10-25T00:32:56Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - ReCode: Robustness Evaluation of Code Generation Models [90.10436771217243]
コード生成モデルのための総合的ロバストネス評価ベンチマークであるReCodeを提案する。
ドクストリング、関数と変数名、コード構文、コードフォーマットのコードに特化して、30以上の変換をカスタマイズします。
ヒトのアノテータでは、摂動プロンプトの90%以上が本来のプロンプトの意味を変えていないことが確認された。
論文 参考訳(メタデータ) (2022-12-20T14:11:31Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
ソースコードのセキュリティ脆弱性の共通カテゴリのいくつかを効率的に検出することを学ぶディープラーニングモデルを提案する。
モデルは、学習可能なパラメータの少ないコードセマンティクスの正確な理解を構築します。
提案したAIは、ベンチマークされたNIST SARDデータセットから特定のCWEに対して98.40%のF1スコアを達成する。
論文 参考訳(メタデータ) (2021-04-19T11:50:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。