論文の概要: A review of UAV Visual Detection and Tracking Methods
- arxiv url: http://arxiv.org/abs/2306.05089v1
- Date: Thu, 8 Jun 2023 10:48:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 14:55:09.222520
- Title: A review of UAV Visual Detection and Tracking Methods
- Title(参考訳): uav視覚検出・追跡法の現状と展望
- Authors: Raed Abu Zitar, Mohammad Al-Betar, Mohamad Ryalat and Sofian
Kassaymehd
- Abstract要約: UAVの位置、速度、画像の収集に依存する様々な技術がある。
この論文は、ドローン検出プロセスで使用される幅広い手法のクイックリファレンスである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a review of techniques used for the detection and
tracking of UAVs or drones. There are different techniques that depend on
collecting measurements of the position, velocity, and image of the UAV and
then using them in detection and tracking. Hybrid detection techniques are also
presented. The paper is a quick reference for a wide spectrum of methods that
are used in the drone detection process.
- Abstract(参考訳): 本稿では,UAVやドローンの検知・追跡に使用される技術について概説する。
紫外線の位置、速度、画像の測定を収集し、検出と追跡に使用する技術は様々である。
ハイブリッド検出技術も提案されている。
この論文は、ドローン検出プロセスで使用される幅広い手法のクイックリファレンスである。
関連論文リスト
- UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
パッチ強度収束(Patch Intensity Convergence、PIC)技術は、手動ラベリングなしでUAV検出のための高忠実なバウンディングボックスを生成する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
論文 参考訳(メタデータ) (2024-09-09T13:27:53Z) - A Comprehensive Review on Tree Detection Methods Using Point Cloud and
Aerial Imagery from Unmanned Aerial Vehicles [4.362788465317224]
本稿では,UAVが収集したUAVデータに対する木検出手法について述べる。
本稿では,画像を直接検出する手法について,Deep Learning (DL) 法を用いるか否かを検証した。
このレビューは、特定の森林で樹木を検知し、農夫が農業生産の管理にUAVを使うのに役立つだろう。
論文 参考訳(メタデータ) (2023-09-28T12:22:39Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - Vision-based Anti-UAV Detection and Tracking [18.307952561941942]
無人航空機(UAV)は様々な分野で広く使われており、セキュリティやプライバシーへの侵入が社会の関心を喚起している。
本稿では,ダリアン工科大学アンチUAVデータセット,DUTアンチUAVという可視光モードデータセットを提案する。
検出データセットには、合計1万の画像と、短期および長期のシーケンスを含む20のビデオの追跡データセットが含まれている。
論文 参考訳(メタデータ) (2022-05-22T15:21:45Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - A dataset for multi-sensor drone detection [67.75999072448555]
近年,小型・遠隔操作無人航空機(UAV)の使用が増加している。
ドローン検出に関するほとんどの研究は、取得デバイスの種類、ドローンの種類、検出範囲、データセットを特定することに失敗している。
我々は、赤外線および可視ビデオとオーディオファイルを含むドローン検出のための注釈付きマルチセンサーデータベースにコントリビュートする。
論文 参考訳(メタデータ) (2021-11-02T20:52:03Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
本稿では,他の飛行ドローンからドローンを検知する問題に対処する。
ソースとターゲットドローンのエロティックな動き、小型、任意の形状、大きな強度、および閉塞は、この問題を非常に困難にします。
これに対処するため,地域提案に基づく手法ではなく,2段階のセグメンテーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-31T17:43:31Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。