論文の概要: Dealing with Semantic Underspecification in Multimodal NLP
- arxiv url: http://arxiv.org/abs/2306.05240v1
- Date: Thu, 8 Jun 2023 14:39:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 13:54:54.755137
- Title: Dealing with Semantic Underspecification in Multimodal NLP
- Title(参考訳): マルチモーダルNLPにおける意味的不特定化によるディーリング
- Authors: Sandro Pezzelle
- Abstract要約: 人間として言語を習得しようとするインテリジェントなシステムは、その意味的過小評価に対処しなければならない。
標準のNLPモデルは、原則として、そのような余分な情報にアクセスできないか制限されている。
言語を他のモダリティ、例えば視覚に基礎を置くマルチモーダルシステムは、この現象を説明するために自然に装備されている。
- 参考スコア(独自算出の注目度): 3.5846770619764423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent systems that aim at mastering language as humans do must deal
with its semantic underspecification, namely, the possibility for a linguistic
signal to convey only part of the information needed for communication to
succeed. Consider the usages of the pronoun they, which can leave the gender
and number of its referent(s) underspecified. Semantic underspecification is
not a bug but a crucial language feature that boosts its storage and processing
efficiency. Indeed, human speakers can quickly and effortlessly integrate
semantically-underspecified linguistic signals with a wide range of
non-linguistic information, e.g., the multimodal context, social or cultural
conventions, and shared knowledge. Standard NLP models have, in principle, no
or limited access to such extra information, while multimodal systems grounding
language into other modalities, such as vision, are naturally equipped to
account for this phenomenon. However, we show that they struggle with it, which
could negatively affect their performance and lead to harmful consequences when
used for applications. In this position paper, we argue that our community
should be aware of semantic underspecification if it aims to develop language
technology that can successfully interact with human users. We discuss some
applications where mastering it is crucial and outline a few directions toward
achieving this goal.
- Abstract(参考訳): 人間として言語をマスターすることを目指す知的システムは、その意味的下位特定、すなわち、言語信号がコミュニケーションの成功に必要な情報の一部を伝達する可能性に対処しなければならない。
代名詞の用法を考えると、その代名詞は、その代名詞の性別と番号を未特定のまま残すことができる。
セマンティクスのアンダーシグメンテーションはバグではなく、そのストレージと処理効率を高める重要な言語機能である。
実際、人間の話者は、多様文脈、社会的・文化的慣習、共有知識など、意味論的に認識された言語信号と幅広い非言語的情報とを迅速かつ無力に統合することができる。
標準的なnlpモデルは、原則としてそのような追加情報にアクセスできないか制限されていないが、マルチモーダルシステムは言語を視覚のような他のモダリティに接地し、自然にこの現象を考慮に入れている。
しかし、パフォーマンスに悪影響を及ぼし、アプリケーションに使用すると有害な結果をもたらす可能性がある。
本論文では,人間ユーザとの対話を成功させる言語技術開発を目指す場合,コミュニティは意味的不特定を意識すべきである,と論じる。
我々は、それをマスターすることが重要であるアプリケーションについて議論し、この目標を達成するためのいくつかの方向について概説する。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Natural Language Processing RELIES on Linguistics [13.142686158720021]
言語学がNLPに寄与する6つの主要な面を包含する頭字語RELIESを論じる。
このリストは徹底的なものではないし、言語学もこれらのテーマの下でのあらゆる努力の主点ではない。
論文 参考訳(メタデータ) (2024-05-09T17:59:32Z) - A Taxonomy of Ambiguity Types for NLP [53.10379645698917]
NLP分析を容易にするために,英語で見られるあいまいさの分類法を提案する。
私たちの分類学は、言語あいまいさデータにおいて意味のある分割を実現するのに役立ち、データセットとモデルパフォーマンスのよりきめ細かい評価を可能にします。
論文 参考訳(メタデータ) (2024-03-21T01:47:22Z) - Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language
Pretraining? [34.609984453754656]
本研究の目的は,意味表現や構文構造を含む包括的言語知識がマルチモーダルアライメントに与える影響を明らかにすることである。
具体的には、最初の大規模マルチモーダルアライメント探索ベンチマークであるSNAREを設計、リリースする。
論文 参考訳(メタデータ) (2023-08-24T16:17:40Z) - Uncertainty in Natural Language Generation: From Theory to Applications [42.55924708592451]
我々は,不確実性に対する原則的対応が,これらの目標に適合するシステムや評価プロトコルの作成に有効であると主張している。
まず,不確実性を表現するために必要な基本理論,枠組み,語彙について述べる。
そこで,本研究では,一般的なアレタリック/エピステミック二分法よりも情報的かつ忠実な2次元分類法を提案する。
論文 参考訳(メタデータ) (2023-07-28T17:51:21Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
ソースユーザと宛先ユーザの間で暗黙的な意味を表現し,伝達し,解釈するために,新しい暗黙的意味コミュニケーション(iSAC)アーキテクチャを提案する。
プロジェクションベースセマンティックエンコーダは, 明示的セマンティックスの高次元グラフィカル表現を低次元セマンティックコンステレーション空間に変換し, 効率的な物理チャネル伝送を実現する。
ソースユーザの暗黙的意味推論過程を学習し、模倣できるようにするため、G-RMLと呼ばれる生成逆模倣学習ベースのソリューションが提案されている。
論文 参考訳(メタデータ) (2023-06-20T01:32:27Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
有望な可能性にもかかわらず、セマンティック通信とセマンティック・アウェア・ネットワーキングはまだ初期段階にある。
本稿では,CDCとエッジサーバの複数層を連携させる,推論に基づく暗黙的セマンティック・アウェア通信ネットワークアーキテクチャを提案する。
暗黙的セマンティクスの階層構造と個人ユーザのパーソナライズされた推論嗜好を考慮に入れたセマンティクス情報の多層表現を提案する。
論文 参考訳(メタデータ) (2022-10-28T13:26:08Z) - On the cross-lingual transferability of multilingual prototypical models
across NLU tasks [2.44288434255221]
教師付きディープラーニングベースのアプローチはタスク指向のダイアログに適用され、限られたドメインや言語アプリケーションに有効であることが証明されている。
実際には、これらのアプローチはドメイン駆動設計とアンダーリソース言語の欠点に悩まされている。
本稿では,原型ニューラルネットワークと多言語トランスフォーマーモデルを用いた相乗的少数ショット学習の言語間変換可能性について検討する。
論文 参考訳(メタデータ) (2022-07-19T09:55:04Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。