Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning
- URL: http://arxiv.org/abs/2306.05494v2
- Date: Wed, 3 Apr 2024 21:55:46 GMT
- Title: Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning
- Authors: Mohamed el Shehaby, Ashraf Matrawy,
- Abstract summary: adversarial attacks aim to trick ML models into producing faulty predictions.
adversarial attacks can compromise ML-based NIDSs.
Our experiments indicate that continuous re-training, even without adversarial training, can reduce the effectiveness of adversarial attacks.
- Score: 1.6574413179773757
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Machine Learning (ML) has become ubiquitous, and its deployment in Network Intrusion Detection Systems (NIDS) is inevitable due to its automated nature and high accuracy compared to traditional models in processing and classifying large volumes of data. However, ML has been found to have several flaws, most importantly, adversarial attacks, which aim to trick ML models into producing faulty predictions. While most adversarial attack research focuses on computer vision datasets, recent studies have explored the suitability of these attacks against ML-based network security entities, especially NIDS, due to the wide difference between different domains regarding the generation of adversarial attacks. To further explore the practicality of adversarial attacks against ML-based NIDS in-depth, this paper presents three distinct contributions: identifying numerous practicality issues for evasion adversarial attacks on ML-NIDS using an attack tree threat model, introducing a taxonomy of practicality issues associated with adversarial attacks against ML-based NIDS, and investigating how the dynamicity of some real-world ML models affects adversarial attacks against NIDS. Our experiments indicate that continuous re-training, even without adversarial training, can reduce the effectiveness of adversarial attacks. While adversarial attacks can compromise ML-based NIDSs, our aim is to highlight the significant gap between research and real-world practicality in this domain, warranting attention.
Related papers
- Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
Large Language Models (LLMs) have become a cornerstone in the field of Natural Language Processing (NLP)
This paper presents a comprehensive survey of the various forms of attacks targeting LLMs.
We delve into topics such as adversarial attacks that aim to manipulate model outputs, data poisoning that affects model training, and privacy concerns related to training data exploitation.
arXiv Detail & Related papers (2024-03-03T04:46:21Z) - Untargeted White-box Adversarial Attack with Heuristic Defence Methods
in Real-time Deep Learning based Network Intrusion Detection System [0.0]
In Adversarial Machine Learning (AML), malicious actors aim to fool the Machine Learning (ML) and Deep Learning (DL) models to produce incorrect predictions.
AML is an emerging research domain, and it has become a necessity for the in-depth study of adversarial attacks.
We implement four powerful adversarial attack techniques, namely, Fast Gradient Sign Method (FGSM), Jacobian Saliency Map Attack (JSMA), Projected Gradient Descent (PGD) and Carlini & Wagner (C&W) in NIDS.
arXiv Detail & Related papers (2023-10-05T06:32:56Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z) - SoK: Realistic Adversarial Attacks and Defenses for Intelligent Network
Intrusion Detection [0.0]
This paper consolidates and summarizes the state-of-the-art adversarial learning approaches that can generate realistic examples.
It defines the fundamental properties that are required for an adversarial example to be realistic.
It provides guidelines for researchers to ensure that their future experiments are adequate for a real communication network.
arXiv Detail & Related papers (2023-08-13T17:23:36Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - On the Security Risks of AutoML [38.03918108363182]
Neural Architecture Search (NAS) is an emerging machine learning paradigm that automatically searches for models tailored to given tasks.
We show that compared with their manually designed counterparts, NAS-generated models tend to suffer greater vulnerability to various malicious attacks.
We discuss potential remedies to mitigate such drawbacks, including increasing cell depth and suppressing skip connects.
arXiv Detail & Related papers (2021-10-12T14:04:15Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Evaluating and Improving Adversarial Robustness of Machine
Learning-Based Network Intrusion Detectors [21.86766733460335]
We study the first systematic study of the gray/black-box traffic-space adversarial attacks to evaluate the robustness of ML-based NIDSs.
Our work outperforms previous ones in the following aspects.
We also propose a defense scheme against adversarial attacks to improve system robustness.
arXiv Detail & Related papers (2020-05-15T13:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.