論文の概要: AaKOS: Aspect-adaptive Knowledge-based Opinion Summarization
- arxiv url: http://arxiv.org/abs/2306.05537v1
- Date: Fri, 26 May 2023 03:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-18 13:10:11.825317
- Title: AaKOS: Aspect-adaptive Knowledge-based Opinion Summarization
- Title(参考訳): AaKOS: アスペクト適応型知識ベースオピニオン要約
- Authors: Guan Wang, Weihua Li, Edmund M-K. Lai, Quan Bai
- Abstract要約: インターネット上の情報の急速な増加は、様々な活動、製品、サービスに関する圧倒的な意見やコメントにつながっている。
これにより、ユーザが意思決定を行うときに利用可能なすべての情報を処理するのが難しく、時間がかかります。
本稿では,製品レビューのためのアスペクト適応型知識ベースオピニオン要約モデルを提案する。
- 参考スコア(独自算出の注目度): 5.4138734778206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of information on the Internet has led to an overwhelming
amount of opinions and comments on various activities, products, and services.
This makes it difficult and time-consuming for users to process all the
available information when making decisions. Text summarization, a Natural
Language Processing (NLP) task, has been widely explored to help users quickly
retrieve relevant information by generating short and salient content from long
or multiple documents. Recent advances in pre-trained language models, such as
ChatGPT, have demonstrated the potential of Large Language Models (LLMs) in
text generation. However, LLMs require massive amounts of data and resources
and are challenging to implement as offline applications. Furthermore, existing
text summarization approaches often lack the ``adaptive" nature required to
capture diverse aspects in opinion summarization, which is particularly
detrimental to users with specific requirements or preferences. In this paper,
we propose an Aspect-adaptive Knowledge-based Opinion Summarization model for
product reviews, which effectively captures the adaptive nature required for
opinion summarization. The model generates aspect-oriented summaries given a
set of reviews for a particular product, efficiently providing users with
useful information on specific aspects they are interested in, ensuring the
generated summaries are more personalized and informative. Extensive
experiments have been conducted using real-world datasets to evaluate the
proposed model. The results demonstrate that our model outperforms
state-of-the-art approaches and is adaptive and efficient in generating
summaries that focus on particular aspects, enabling users to make
well-informed decisions and catering to their diverse interests and
preferences.
- Abstract(参考訳): インターネット上の情報の急速な成長は、様々な活動、製品、サービスに関する圧倒的な量の意見やコメントを生み出した。
これにより、ユーザが意思決定時に利用可能なすべての情報を処理するのが難しく、時間がかかります。
自然言語処理(NLP)タスクであるテキスト要約は、長い文書や複数の文書から短文や有能なコンテンツを生成することで、ユーザが関連情報を素早く検索するのを助けるために広く研究されている。
ChatGPTのような事前学習言語モデルの最近の進歩は、テキスト生成におけるLLM(Large Language Models)の可能性を示している。
しかし、LLMは大量のデータとリソースを必要とし、オフラインアプリケーションとして実装することは困難である。
さらに、既存のテキスト要約アプローチは、意見要約の様々な側面を捉えるのに必要な「適応的」な性質を欠いていることが多い。
本稿では,意見要約に必要な適応的性質を効果的に捉えた製品レビューのための,アスペクト適応型知識に基づく意見要約モデルを提案する。
モデルは、特定の製品に対するレビューのセットが与えられたアスペクト指向の要約を生成し、ユーザーが興味を持っている特定の側面について有用な情報を効率的に提供し、生成された要約がよりパーソナライズされ、情報的であることを保証します。
提案モデルを評価するために,実世界のデータセットを用いた広範な実験が行われている。
その結果,我々のモデルは最先端のアプローチよりも優れており,特定の側面に焦点を当てた要約を生成するのに適応的かつ効率的であることが判明した。
関連論文リスト
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
論文 参考訳(メタデータ) (2024-11-14T13:00:23Z) - LFOSum: Summarizing Long-form Opinions with Large Language Models [7.839083566878183]
本稿では,(1)長文ユーザレビューの新しいデータセット,(1)1000以上のレビューを含むエンティティ,(2)長期入力にスケールする2つのトレーニングフリーLCMベースの要約アプローチ,(3)自動評価指標を紹介する。
ユーザレビューのデータセットは、ドメインの専門家による詳細な、偏見のない批判的な要約と組み合わせられ、評価の基準として役立ちます。
我々の評価では、LLMは長文要約における感情と形式順守のバランスをとる上で依然として課題に直面しているが、オープンソースモデルでは、関連する情報が集中的に検索される場合のギャップを狭めることができる。
論文 参考訳(メタデータ) (2024-10-16T20:52:39Z) - UserSumBench: A Benchmark Framework for Evaluating User Summarization Approaches [25.133460380551327]
大規模言語モデル(LLM)は、大量のユーザアクティビティデータからユーザ要約を生成する際、顕著な能力を示している。
これらの要約は、好みや興味などの重要なユーザー情報を取り込み、パーソナライズ・アプリケーションには有用である。
しかし, 新たな要約手法の開発は, ゼロ・トラストラベルの欠如, ユーザ・サマリー固有の主観性, 人的評価などによって妨げられている。
論文 参考訳(メタデータ) (2024-08-30T01:56:57Z) - Leveraging Large Language Models for Mobile App Review Feature Extraction [4.879919005707447]
本研究では,エンコーダのみの大規模言語モデルがモバイルアプリレビューから特徴抽出を促進できるという仮説を考察する。
クラウドソーシングされたアノテーションを産業的文脈から活用することにより、特徴抽出を教師付きトークン分類タスクとして再定義する。
実験により,抽出した特徴の精度とリコールが向上し,性能効率が向上することが確認された。
論文 参考訳(メタデータ) (2024-08-02T07:31:57Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
我々の目標は、マルチモーダルパーソナライゼーションシステム(UniMP)のための統一パラダイムを確立することである。
我々は、幅広いパーソナライズされたニーズに対処できる汎用的でパーソナライズされた生成フレームワークを開発する。
我々の手法は、パーソナライズされたタスクのための基礎言語モデルの能力を高める。
論文 参考訳(メタデータ) (2024-03-15T20:21:31Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
本稿では,BOEDを用いて情報的質問の選択を案内するフレームワークOPENと,特徴抽出のためのLMを紹介する。
ユーザスタディでは,OPEN が既存の LM- や BOED をベースとした選好手法よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-03-08T18:57:52Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Adaptive Summaries: A Personalized Concept-based Summarization Approach
by Learning from Users' Feedback [0.0]
本稿では,アダプティブ・サマリー(Adaptive Summaries)と呼ばれるインタラクティブな概念に基づく要約モデルを提案する。
本システムは,反復ループでフィードバックを与えることで,システムと対話しながら,ユーザの提供した情報から徐々に学習する。
生成したサマリーでユーザ好みのコンテンツを最大化することで、ユーザの好みに基づいた高品質なサマリー作成を支援する。
論文 参考訳(メタデータ) (2020-12-24T18:27:50Z) - Read what you need: Controllable Aspect-based Opinion Summarization of
Tourist Reviews [23.7107052882747]
オンライン観光レビューからパーソナライズされたアスペクトベースの意見要約を作成するためのソリューションの必要性と提案を議論する。
読者に、興味のある長さや特定の側面など、要約のいくつかの属性を決定し、制御させます。
具体的には、TripAdvisorに投稿された観光レビューからコヒーレントな側面を抽出するための教師なしアプローチを採っている。
論文 参考訳(メタデータ) (2020-06-08T15:03:38Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
オピニオン要約は、複数の文書で表現された主観的な情報を反映したテキストの自動生成である。
本研究では,要約テキストの生成をブートストラップするのには,少数の要約でも十分であることを示す。
提案手法は, 従来の抽出法および抽象法を, 自動的, 人的評価において大きく上回っている。
論文 参考訳(メタデータ) (2020-04-30T15:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。