論文の概要: Rehearse With User: Personalized Opinion Summarization via Role-Playing based on Large Language Models
- arxiv url: http://arxiv.org/abs/2503.00449v1
- Date: Sat, 01 Mar 2025 11:05:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:22.892245
- Title: Rehearse With User: Personalized Opinion Summarization via Role-Playing based on Large Language Models
- Title(参考訳): ユーザによるリハーサル:大規模言語モデルに基づくロールプレイングによるパーソナライズオピニオン要約
- Authors: Yanyue Zhang, Yulan He, Deyu Zhou,
- Abstract要約: 大きな言語モデルは、長いテキストを含むパーソナライズされたタスクにおいて困難に直面します。
モデルがユーザとして機能することで、モデルはユーザのパーソナライズされたニーズをよりよく理解できます。
提案手法は,大規模モデル生成サマリーにおけるパーソナライズレベルを効果的に向上させることができる。
- 参考スコア(独自算出の注目度): 29.870187698924852
- License:
- Abstract: Personalized opinion summarization is crucial as it considers individual user interests while generating product summaries. Recent studies show that although large language models demonstrate powerful text summarization and evaluation capabilities without the need for training data, they face difficulties in personalized tasks involving long texts. To address this, \textbf{Rehearsal}, a personalized opinion summarization framework via LLMs-based role-playing is proposed. Having the model act as the user, the model can better understand the user's personalized needs. Additionally, a role-playing supervisor and practice process are introduced to improve the role-playing ability of the LLMs, leading to a better expression of user needs. Furthermore, through suggestions from virtual users, the summary generation is intervened, ensuring that the generated summary includes information of interest to the user, thus achieving personalized summary generation. Experiment results demonstrate that our method can effectively improve the level of personalization in large model-generated summaries.
- Abstract(参考訳): 個人化された意見要約は、製品要約を作成しながら個人のユーザ関心を考慮し、不可欠である。
近年の研究では、大規模な言語モデルは、学習データを必要としない強力なテキスト要約と評価能力を示しているが、長文を含むパーソナライズされたタスクでは困難に直面している。
これを解決するために, LLMを用いたロールプレイングによるパーソナライズされた意見要約フレームワークであるtextbf{Rehearsal}を提案する。
モデルがユーザとして機能することで、モデルはユーザのパーソナライズされたニーズをよりよく理解できます。
さらに、LLMのロールプレイング能力を向上させるためにロールプレイング・スーパーバイザーと実践プロセスを導入し、ユーザニーズをより良く表現する。
さらに、仮想ユーザからの提言により、要約生成が介入され、生成された要約がユーザへの関心情報を含むことが保証され、パーソナライズされた要約生成が達成される。
実験結果から,本手法は大規模モデル生成サマリーのパーソナライズレベルを効果的に向上できることが示された。
関連論文リスト
- Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
ユーザ中心の知識グラフを利用してパーソナライゼーションを強化するフレームワークを提案する。
構造化されたユーザ知識を直接検索プロセスに統合し、ユーザ関連コンテキストにプロンプトを拡大することにより、PGraphはコンテキスト理解と出力品質を向上させる。
また,ユーザ履歴が不足あるいは利用できない実環境において,パーソナライズされたテキスト生成タスクを評価するために設計された,パーソナライズドグラフベースのテキスト生成ベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-04T01:46:49Z) - UserSumBench: A Benchmark Framework for Evaluating User Summarization Approaches [25.133460380551327]
大規模言語モデル(LLM)は、大量のユーザアクティビティデータからユーザ要約を生成する際、顕著な能力を示している。
これらの要約は、好みや興味などの重要なユーザー情報を取り込み、パーソナライズ・アプリケーションには有用である。
しかし, 新たな要約手法の開発は, ゼロ・トラストラベルの欠如, ユーザ・サマリー固有の主観性, 人的評価などによって妨げられている。
論文 参考訳(メタデータ) (2024-08-30T01:56:57Z) - Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
我々は,5つの公開データセットと自然言語ユーザフィードバックのためのコヒーレントな要約からなる,体系的に作成された人間アノテーションデータセットを提案する。
Falcon-40BとLlama-2-13Bによる予備的な実験では、コヒーレントなサマリーを生成するという点で大幅な性能向上(10%ルージュ-L)が見られた。
論文 参考訳(メタデータ) (2024-07-05T20:25:04Z) - Role-playing Prompt Framework: Generation and Evaluation [3.2845546753303867]
大規模言語モデル(LLM)は、自然言語生成、ユーザ命令の理解、人間に似た言語使用のエミュレートにおいて、優れた習熟度を示す。
本稿では、ロールプレイング対話データセットの生成にGPTの機能を活用するために設計されたプロンプトベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-02T06:09:56Z) - Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement [79.2400720115588]
本稿では,タスクコンテキスト間の一般化を改善するための階層的な構築プロセスからなる,シンプルで効果的なフレームワークであるPersona-DBを紹介する。
応答予測の評価において,Persona-DB は精度を著しく低減した検索サイズで維持する上で,より優れたコンテキスト効率を示す。
我々の実験は、ユーザーが極めて少ないデータを持つ場合、コールドスタートシナリオで10%以上の顕著な改善が示されていることも示している。
論文 参考訳(メタデータ) (2024-02-16T20:20:43Z) - RELIC: Investigating Large Language Model Responses using Self-Consistency [58.63436505595177]
LLM(Large Language Models)は、フィクションと事実を混同し、幻覚として知られる非事実コンテンツを生成することで有名である。
本稿では,ユーザが生成したテキストの信頼性を把握できる対話型システムを提案する。
論文 参考訳(メタデータ) (2023-11-28T14:55:52Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
パーソナライゼーションは自然言語処理(NLP)システムにおけるユーザエクスペリエンスにおいて重要な要素である。
LLM(Large Language Models)の出現によって、重要な疑問は、これらのモデルを使ってユーザエクスペリエンスをよりパーソナライズする方法である。
LLMが生成するタスク対応ユーザ要約を用いた,新しい要約型パーソナライゼーションを提案する。
論文 参考訳(メタデータ) (2023-10-30T23:40:41Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z) - AaKOS: Aspect-adaptive Knowledge-based Opinion Summarization [5.4138734778206]
インターネット上の情報の急速な増加は、様々な活動、製品、サービスに関する圧倒的な意見やコメントにつながっている。
これにより、ユーザが意思決定を行うときに利用可能なすべての情報を処理するのが難しく、時間がかかります。
本稿では,製品レビューのためのアスペクト適応型知識ベースオピニオン要約モデルを提案する。
論文 参考訳(メタデータ) (2023-05-26T03:44:35Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - Adaptive Summaries: A Personalized Concept-based Summarization Approach
by Learning from Users' Feedback [0.0]
本稿では,アダプティブ・サマリー(Adaptive Summaries)と呼ばれるインタラクティブな概念に基づく要約モデルを提案する。
本システムは,反復ループでフィードバックを与えることで,システムと対話しながら,ユーザの提供した情報から徐々に学習する。
生成したサマリーでユーザ好みのコンテンツを最大化することで、ユーザの好みに基づいた高品質なサマリー作成を支援する。
論文 参考訳(メタデータ) (2020-12-24T18:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。