論文の概要: Explaining Predictive Uncertainty with Information Theoretic Shapley
Values
- arxiv url: http://arxiv.org/abs/2306.05724v2
- Date: Tue, 31 Oct 2023 17:15:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 23:44:17.387359
- Title: Explaining Predictive Uncertainty with Information Theoretic Shapley
Values
- Title(参考訳): 情報理論シャプリー値を用いた予測の不確実性の説明
- Authors: David S. Watson, Joshua O'Hara, Niek Tax, Richard Mudd, and Ido Guy
- Abstract要約: 我々は、様々な種類の予測の不確実性を説明するために、人気のShapley値フレームワークを適用します。
我々は,実データおよびシミュレーションデータに対して,様々な実験でよく動作する効率的なアルゴリズムを実装した。
- 参考スコア(独自算出の注目度): 6.49838460559032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Researchers in explainable artificial intelligence have developed numerous
methods for helping users understand the predictions of complex supervised
learning models. By contrast, explaining the $\textit{uncertainty}$ of model
outputs has received relatively little attention. We adapt the popular Shapley
value framework to explain various types of predictive uncertainty, quantifying
each feature's contribution to the conditional entropy of individual model
outputs. We consider games with modified characteristic functions and find deep
connections between the resulting Shapley values and fundamental quantities
from information theory and conditional independence testing. We outline
inference procedures for finite sample error rate control with provable
guarantees, and implement efficient algorithms that perform well in a range of
experiments on real and simulated data. Our method has applications to
covariate shift detection, active learning, feature selection, and active
feature-value acquisition.
- Abstract(参考訳): 説明可能な人工知能の研究者は、複雑な教師付き学習モデルの予測を理解するための多くの方法を開発した。
対照的に、$\textit{uncertainty}$のモデル出力の説明は、比較的ほとんど注目を集めていない。
一般的なshapley値フレームワークを使って様々な予測の不確実性を説明し、個々のモデル出力の条件エントロピーに対する各特徴の寄与を定量化する。
特徴関数を改良したゲームについて検討し,情報理論と条件独立テストから得られたShapley値と基本量の深い関係を見出す。
証明可能な保証付き有限サンプル誤差率制御のための推論手順を概説し、実データおよびシミュレーションデータに対する実験範囲でよく動作する効率的なアルゴリズムを実装した。
提案手法は,シフト検出,アクティブラーニング,特徴選択,能動的特徴値獲得を共変させる。
関連論文リスト
- Pattern based learning and optimisation through pricing for bin packing problem [50.83768979636913]
確率変数の分布のような問題条件が変化すると、以前の状況でうまく機能するパターンはより効果的になるかもしれないと論じる。
本研究では,パターンを効率的に同定し,各条件に対する値の動的定量化を行う新しい手法を提案する。
本手法は,制約を満たす能力と目的値に対する影響に基づいて,パターンの値の定量化を行う。
論文 参考訳(メタデータ) (2024-08-27T17:03:48Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
シェープ価値は、モデル決定プロセスの解明のための機械学習(ML)の基礎ツールとして現れている。
本稿では,Shapley値の計算を大幅に単純化し,単一のフォワードパスしか必要としない,新しい自己説明手法を提案する。
論文 参考訳(メタデータ) (2024-02-06T18:09:05Z) - LLpowershap: Logistic Loss-based Automated Shapley Values Feature
Selection Method [0.0]
損失に基づくShapley値を用いて最小ノイズで情報的特徴を識別する新しい特徴選択手法LLpowershapを提案する。
シミュレーションの結果,LLpowershapはより多くの情報特徴を識別するだけでなく,他の最先端特徴選択法と比較して,ノイズ特性の少ない特徴を出力することがわかった。
論文 参考訳(メタデータ) (2024-01-23T11:46:52Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Exact Shapley Values for Local and Model-True Explanations of Decision
Tree Ensembles [0.0]
決定木アンサンブルの説明にShapley値を適用することを検討する。
本稿では,無作為林に適応し,決定木を増強できる,Shapley値に基づく特徴属性に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-16T20:16:02Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Explaining predictive models using Shapley values and non-parametric
vine copulas [2.6774008509840996]
特徴間の依存をモデル化するための2つの新しいアプローチを提案する。
提案手法の性能はシミュレーションされたデータセットと実データセットで評価される。
実験により、ブドウのコプラアプローチは、ライバルよりも真のシャプリー値により正確な近似を与えることが示された。
論文 参考訳(メタデータ) (2021-02-12T09:43:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。