論文の概要: Detecting Phishing Sites Using ChatGPT
- arxiv url: http://arxiv.org/abs/2306.05816v2
- Date: Thu, 15 Feb 2024 03:05:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 23:48:38.583017
- Title: Detecting Phishing Sites Using ChatGPT
- Title(参考訳): ChatGPTによる養殖現場の検出
- Authors: Takashi Koide, Naoki Fukushi, Hiroki Nakano, Daiki Chiba,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を用いてフィッシングサイトを検出するChatPhishDetectorという新しいシステムを提案する。
本システムでは,Webクローラを利用してWebサイトから情報を収集し,クローリングデータに基づいてLLMのプロンプトを生成し,LLMが生成した応答から検出結果を取得する。
GPT-4Vを用いた実験結果は、98.7%の精度と99.6%のリコールで優れた性能を示し、他のLLMや既存のシステムよりも優れていた。
- 参考スコア(独自算出の注目度): 2.3999111269325266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Large Language Models (LLMs), including ChatGPT, is having a significant impact on a wide range of fields. While LLMs have been extensively researched for tasks such as code generation and text synthesis, their application in detecting malicious web content, particularly phishing sites, has been largely unexplored. To combat the rising tide of cyber attacks due to the misuse of LLMs, it is important to automate detection by leveraging the advanced capabilities of LLMs. In this paper, we propose a novel system called ChatPhishDetector that utilizes LLMs to detect phishing sites. Our system involves leveraging a web crawler to gather information from websites, generating prompts for LLMs based on the crawled data, and then retrieving the detection results from the responses generated by the LLMs. The system enables us to detect multilingual phishing sites with high accuracy by identifying impersonated brands and social engineering techniques in the context of the entire website, without the need to train machine learning models. To evaluate the performance of our system, we conducted experiments on our own dataset and compared it with baseline systems and several LLMs. The experimental results using GPT-4V demonstrated outstanding performance, with a precision of 98.7% and a recall of 99.6%, outperforming the detection results of other LLMs and existing systems. These findings highlight the potential of LLMs for protecting users from online fraudulent activities and have important implications for enhancing cybersecurity measures.
- Abstract(参考訳): ChatGPTを含むLarge Language Models (LLMs)の出現は、幅広い分野に大きな影響を与えている。
LLMは、コード生成やテキスト合成といったタスクのために広く研究されてきたが、悪意のあるWebコンテンツ、特にフィッシングサイトを検出するための応用は、ほとんど探索されていない。
LLMの誤用によるサイバー攻撃の高まりに対処するためには、LLMの高度な能力を活用して検出を自動化することが重要である。
本稿では, LLMを用いたフィッシングサイト検出システムChatPhishDetectorを提案する。
本システムでは,Webクローラを利用してWebサイトから情報を収集し,クローリングデータに基づいてLLMのプロンプトを生成し,LLMが生成した応答から検出結果を取得する。
本システムは,機械学習モデルをトレーニングすることなく,Webサイト全体のコンテキストにおいて,偽造ブランドやソーシャルエンジニアリング技術を特定することで,多言語フィッシングサイトを高精度に検出することを可能にする。
システムの性能を評価するため,我々のデータセットを用いて実験を行い,ベースラインシステムや複数のLLMと比較した。
GPT-4Vを用いた実験結果は、98.7%の精度と99.6%のリコールで優れた性能を示し、他のLLMや既存のシステムよりも優れていた。
これらの知見は、ユーザをオンライン不正行為から保護し、サイバーセキュリティ対策の強化に重要な意味を持つLLMの可能性を浮き彫りにしている。
関連論文リスト
- Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
フィッシングメールのエスカレートする脅威は、Large Language Models(LLMs)の台頭により、ますます洗練されつつある。
攻撃者はLSMを利用して、より説得力があり回避的なフィッシングメールを作成するため、現在のフィッシング防御のレジリエンスを評価することが不可欠である。
我々は、Gmail Spam Filter、Apache SpamAssassin、Proofpointなどの従来のフィッシング検出と、SVM、Logistic Regression、Naive Bayesといった機械学習モデルに関する包括的な評価を行います。
以上の結果から,全検知器にまたがるリフレッシュメールの検出精度は著しく低下し,現在のフィッシング防御における重大な弱点が浮き彫りになった。
論文 参考訳(メタデータ) (2024-11-21T06:20:29Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Exploring LLMs for Malware Detection: Review, Framework Design, and Countermeasure Approaches [0.24578723416255752]
マルウェアの作成と拡散にLarge Language Modelsの利用が増加していることは、サイバーセキュリティの重大な課題となっている。
本稿では,LSMと各種ソースからのマルウェア検出におけるその役割について概説する。
マルウェアハニーポット、テキストベースの脅威の識別、悪意のある意図を検出するためのコード解析、マルウェアの傾向分析、非標準的な偽装マルウェアの検出。
論文 参考訳(メタデータ) (2024-09-11T19:33:44Z) - Multimodal Large Language Models for Phishing Webpage Detection and Identification [29.291474807301594]
フィッシングWebページの検出における大規模言語モデル(LLM)の有効性について検討した。
我々のシステムは高精度で高い検出率を達成する。
また、決定の解釈可能な証拠も提供する。
論文 参考訳(メタデータ) (2024-08-12T06:36:08Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls [3.5698678013121334]
本研究は,システムコールデータに基づいてマルウェアを分類するために,大規模言語モデル(LLM)を利用した新しいフレームワークを提案する。
1TBを超えるシステムコールのデータセットによる実験では、BigBirdやLongformerのようなより大きなコンテキストサイズを持つモデルの方が精度が良く、F1スコアは約0.86である。
このアプローチは、ハイテイク環境におけるリアルタイム検出の大きな可能性を示し、サイバー脅威の進化に対する堅牢なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-15T13:19:43Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
システムプロンプトの漏洩は知的財産を侵害し、攻撃者に対する敵の偵察として機能する可能性がある。
我々は, LLM sycophancy 効果を利用して, 平均攻撃成功率 (ASR) を17.7%から86.2%に高めるユニークな脅威モデルを構築した。
7つのブラックボックス防衛戦略の緩和効果と、漏洩防止のためのオープンソースモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-24T23:39:58Z) - Detecting Scams Using Large Language Models [19.7220607313348]
大規模言語モデル(LLM)は、セキュリティなど、様々なアプリケーションで注目を集めている。
本稿では,サイバーセキュリティの重要な側面である詐欺検知におけるLCMの有用性について検討する。
フィッシング、前払い詐欺、ロマンス詐欺などの詐欺を識別するためのLLMの新しいユースケースを提案する。
論文 参考訳(メタデータ) (2024-02-05T16:13:54Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。