論文の概要: Using Parametric PINNs for Predicting Internal and External Turbulent Flows
- arxiv url: http://arxiv.org/abs/2410.18917v1
- Date: Thu, 24 Oct 2024 17:08:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:48:26.557733
- Title: Using Parametric PINNs for Predicting Internal and External Turbulent Flows
- Title(参考訳): パラメトリックPINNを用いた内部および外部乱流の予測
- Authors: Shinjan Ghosh, Amit Chakraborty, Georgia Olympia Brikis, Biswadip Dey,
- Abstract要約: 提案するRANS-PINNフレームワークは,シリンダー上の流れの予測にのみ焦点をあてたものである。
本研究では,内流と外流の双方に対して,関連する乱流変数を予測する際の精度について検討する。
- 参考スコア(独自算出の注目度): 6.387263468033964
- License:
- Abstract: Computational fluid dynamics (CFD) solvers employing two-equation eddy viscosity models are the industry standard for simulating turbulent flows using the Reynolds-averaged Navier-Stokes (RANS) formulation. While these methods are computationally less expensive than direct numerical simulations, they can still incur significant computational costs to achieve the desired accuracy. In this context, physics-informed neural networks (PINNs) offer a promising approach for developing parametric surrogate models that leverage both existing, but limited CFD solutions and the governing differential equations to predict simulation outcomes in a computationally efficient, differentiable, and near real-time manner. In this work, we build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder. To investigate the efficacy of RANS-PINN as a viable approach to building parametric surrogate models, we investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows. To ensure training convergence with a more complex loss function, we adopt a novel sampling approach that exploits the domain geometry to ensure a proper balance among the contributions from various regions within the solution domain. The effectiveness of this framework is then demonstrated for two scenarios that represent a broad class of internal and external flow problems.
- Abstract(参考訳): 2方程式渦粘度モデルを用いた計算流体力学(CFD)は、レイノルズ平均Navier-Stokes(RANS)定式化を用いた乱流シミュレーションの業界標準である。
これらの手法は直接数値シミュレーションよりも計算コストが低いが、所望の精度を達成するためにかなりの計算コストを発生させることができる。
この文脈では、物理インフォームドニューラルネットワーク(PINN)は、計算効率が高く、微分可能で、ほぼリアルタイムにシミュレーション結果を予測するために、既存のCFDソリューションと支配微分方程式の両方を活用するパラメトリックサロゲートモデルを開発するための有望なアプローチを提供する。
本研究では,シリンダ上の流れの予測にのみ焦点をあてたRANS-PINNフレームワークを構築した。
パラメトリック・サロゲートモデル構築におけるRANS-PINNの有効性を検討するため, 内部および外部流の乱流変数の予測における精度について検討した。
より複雑な損失関数によるトレーニング収束を確保するため、我々は、領域幾何学を利用した新しいサンプリングアプローチを採用し、ソリューション領域内の様々な領域からのコントリビューションの適切なバランスを確保する。
このフレームワークの有効性は、内部および外部フロー問題の幅広いクラスを表す2つのシナリオで実証される。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
本稿では,深層ニューラルネットワークモデルにおける分布外データセットの探索的正規化フローを用いた簡単なアプローチを提案する。
本手法は, 流通外データと流通内データとを確実に識別できることを示す。
論文 参考訳(メタデータ) (2023-11-01T09:08:35Z) - RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows [3.1861308132183384]
我々は,高レイノルズ数乱流状態における流れ場を予測するために,改良されたPINNフレームワークであるRANS-PINNを導入する。
乱流によってもたらされるさらなる複雑さを考慮するため、RANS-PINNはレイノルズ平均ナヴィエ・ストークス(RANS)の定式化に基づく2方程式渦粘性モデルを採用している。
論文 参考訳(メタデータ) (2023-06-09T16:55:49Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
本研究はターボファンエンジンにおける燃料室噴射器の性能向上を目的としている。
燃料/空気混合物のリアルタイム予測と改善を可能にするモデルの開発が必要である。
論文 参考訳(メタデータ) (2022-12-24T12:59:41Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
本稿では,Laplace をベースとしたベイズ推定と ANN アーキテクチャを併用して ODE 軌道の近似を求めるハイブリッド手法を提案する。
本手法の有効性を,非分析的ソリューションを用いた疫学システム,Susceptible-Infectious-Demoved (SIR) モデルを用いて実証した。
論文 参考訳(メタデータ) (2022-10-17T09:02:41Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。