論文の概要: Neural FIM for learning Fisher Information Metrics from point cloud data
- arxiv url: http://arxiv.org/abs/2306.06062v2
- Date: Mon, 12 Jun 2023 00:37:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 21:09:17.792550
- Title: Neural FIM for learning Fisher Information Metrics from point cloud data
- Title(参考訳): ポイントクラウドデータを用いた漁獲量学習のためのニューラルFIM
- Authors: Oluwadamilola Fasina, Guillaume Huguet, Alexander Tong, Yanlei Zhang,
Guy Wolf, Maximilian Nickel, Ian Adelstein, Smita Krishnaswamy
- Abstract要約: 我々は、ポイントクラウドデータからフィッシャー情報量(FIM)を計算するためのニューラルFIMを提案する。
本稿では,PHATE可視化手法のパラメータの選択と,IPSCリプログラミングとPBMC(免疫細胞)の2つの単一セルデータセットと,おもちゃデータセットの分岐点とクラスタセンターの埋め込みに関する情報を得る能力について述べる。
- 参考スコア(独自算出の注目度): 71.07939200676199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although data diffusion embeddings are ubiquitous in unsupervised learning
and have proven to be a viable technique for uncovering the underlying
intrinsic geometry of data, diffusion embeddings are inherently limited due to
their discrete nature. To this end, we propose neural FIM, a method for
computing the Fisher information metric (FIM) from point cloud data - allowing
for a continuous manifold model for the data. Neural FIM creates an extensible
metric space from discrete point cloud data such that information from the
metric can inform us of manifold characteristics such as volume and geodesics.
We demonstrate Neural FIM's utility in selecting parameters for the PHATE
visualization method as well as its ability to obtain information pertaining to
local volume illuminating branching points and cluster centers embeddings of a
toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs
(immune cells).
- Abstract(参考訳): データ拡散埋め込みは教師なし学習においてユビキタスであり、データの基本構造を明らかにするための有効な技術であることが証明されているが、拡散埋め込みはその離散的な性質のために本質的に制限されている。
この目的のために我々は、ポイントクラウドデータからフィッシャー情報量(FIM)を計算するニューラルFIMを提案し、データに対する連続多様体モデルを実現する。
ニューラルFIMは離散点雲データから拡張可能な距離空間を生成し、計量からの情報が体積や測地線などの多様体特性を教えてくれるようにする。
本稿では,PHATE可視化手法のパラメータ選択におけるNeural FIMの有用性と,IPSCリプログラミングとPBMC(免疫細胞)の2つの単一セルデータセットと玩具データセットの分岐点とクラスタセンターの埋め込みに関する情報を得る能力を示す。
関連論文リスト
- Pullback Flow Matching on Data Manifolds [10.187244125099479]
プルバックフローマッチング(Pullback Flow Matching、PFM)は、データ多様体上の生成モデリングのためのフレームワークである。
PFMの有効性を、合成、データダイナミクス、タンパク質配列データに適用し、特定の性質を持つ新規なタンパク質を生成することによって実証する。
本手法は, 創薬・材料科学に強い可能性を示し, 特定の性質を持つ新規試料の生成に大きな関心を寄せている。
論文 参考訳(メタデータ) (2024-10-06T16:41:26Z) - Manifold Learning via Foliations and Knowledge Transfer [0.0]
分類器として訓練された深部ReLUニューラルネットワークを用いたデータ空間上の自然な幾何学的構造を提供する。
そのような葉の特異点が測度ゼロ集合に含まれており、局所正則葉は至る所に存在することを示す。
実験により、データは葉の葉と相関していることが示された。
論文 参考訳(メタデータ) (2024-09-11T16:53:53Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - On the Interplay of Subset Selection and Informed Graph Neural Networks [3.091456764812509]
この研究は、QM9データセットにおける分子の原子化エネルギーの予測に焦点を当てている。
トレーニングセット選択過程における分子多様性の最大化は,線形回帰法および非線形回帰法のロバスト性を高めることを示す。
また、モデルに依存しない説明器を用いて、グラフニューラルネットワークによる予測の信頼性を確認する。
論文 参考訳(メタデータ) (2023-06-15T09:09:27Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
メッシュ生成のための新しいスパース潜在点拡散モデルを設計する。
私たちの重要な洞察は、ポイントクラウドをメッシュの中間表現と見なし、代わりにポイントクラウドの分布をモデル化することです。
提案したスパース潜在点拡散モデルにより,生成品質と制御性において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-03-14T14:25:29Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
本稿では,多様体畳み込みフィルタと点次非線形性からなる多様体ニューラルネットワーク(MNN)を提案する。
要約すると、我々は大きなグラフの極限として多様体モデルに焦点を合わせ、MNNを構築するが、それでもMNNの離散化によってグラフニューラルネットワークを復活させることができる。
論文 参考訳(メタデータ) (2022-10-01T21:17:39Z) - Learning a Self-Expressive Network for Subspace Clustering [15.096251922264281]
本稿では,データ表現の自己表現を学習するために,適切に設計されたニューラルネットワークを用いた,自己表現型ネットワーク(SENet)と呼ばれる,サブスペースクラスタリングのための新しいフレームワークを提案する。
私たちのSENetは、トレーニングデータに望ましい特性を持つ自己表現係数を学習するだけでなく、サンプル外のデータも処理します。
特に、SENetはMNIST、Fashion MNIST、Extended MNISTで高い競争力を発揮し、CIFAR-10で最先端のパフォーマンスを得る。
論文 参考訳(メタデータ) (2021-10-08T18:06:06Z) - A Multiscale Environment for Learning by Diffusion [9.619814126465206]
本稿では,Multiscale Environment for Learning by Diffusion (MELD)データモデルを提案する。
本稿では,MELDデータモデルがデータ中の潜在的マルチスケール構造を正確に把握し,解析を容易にすることを示す。
多くの実データセットで観測されるマルチスケール構造を効率的に学習するために,教師なし拡散(M-LUND)クラスタリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2021-01-31T17:46:19Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。