論文の概要: SAM-helps-Shadow:When Segment Anything Model meet shadow removal
- arxiv url: http://arxiv.org/abs/2306.06113v1
- Date: Thu, 1 Jun 2023 06:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-18 12:52:10.489023
- Title: SAM-helps-Shadow:When Segment Anything Model meet shadow removal
- Title(参考訳): sam-helps-shadow氏: セグメンテーションモデルがシャドウ除去を満たすとき
- Authors: Xiaofeng Zhang, Chaochen Gu, Shanying Zhu
- Abstract要約: 本研究では,SAM-helps-Shadowを導入し,SAM(セグメンション・アズ・モデル)を影除去に適用した。
提案手法では,2次深部展開ネットワークを用いたシャドウ除去に続いて,シャドウ検出を容易にするために,モデルの検出結果を強力な先行要因として利用した。
- 参考スコア(独自算出の注目度): 8.643096072885909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenges surrounding the application of image shadow removal to
real-world images and not just constrained datasets like ISTD/SRD have
highlighted an urgent need for zero-shot learning in this field. In this study,
we innovatively adapted the SAM (Segment anything model) for shadow removal by
introducing SAM-helps-Shadow, effectively integrating shadow detection and
removal into a single stage. Our approach utilized the model's detection
results as a potent prior for facilitating shadow detection, followed by shadow
removal using a second-order deep unfolding network. The source code of
SAM-helps-Shadow can be obtained from
https://github.com/zhangbaijin/SAM-helps-Shadow.
- Abstract(参考訳): ISTD/SRDのような制約付きデータセットだけでなく、実際の画像への画像シャドウ除去の適用に関する課題は、この分野におけるゼロショット学習の緊急の必要性を強調している。
本研究では, SAM-helps-Shadowを導入し, シャドー検出とシャドー除去を一つのステージに効果的に統合することで, SAM(セグメンツ・アズ・モデル)を斬新に応用した。
提案手法では,モデルの検出結果を,影検出を容易にするための強力な先行手法として活用し,続いて2次ディープアンフォールディングネットワークを用いた影除去を行った。
SAM-helps-Shadowのソースコードはhttps://github.com/zhangbaijin/SAM-helps-Shadowから入手できる。
関連論文リスト
- SoftShadow: Leveraging Penumbra-Aware Soft Masks for Shadow Removal [35.16957947180504]
シャドウ除去に特化して設計された新しいソフトシャドウマスクを導入する。
このようなソフトマスクを実現するために,事前学習されたSAMの事前知識を活用したtextitSoftShadowフレームワークを提案する。
このフレームワークは、端から端までのシャドウ除去を同時に容易にしながら、ペナムブラ(部分陰影領域)とウンブラ(完全に陰影領域)の正確な予測を可能にする。
論文 参考訳(メタデータ) (2024-09-11T06:12:26Z) - Shadow Removal Refinement via Material-Consistent Shadow Edges [33.8383848078524]
同じ材料で領域を横断する影の縁の両側には、影を適切に取り除けば、原色とテクスチャは同一であるべきである。
画像セグメンテーション基盤モデルであるSAMを微調整し、影不変セグメンテーションを生成し、材料一貫性のあるシャドウエッジを抽出する。
本手法は,より難易度の高い画像に対して,影除去結果の改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-09-10T20:16:28Z) - AdapterShadow: Adapting Segment Anything Model for Shadow Detection [6.201928340999525]
Segment Any Model (SAM)は、ユニバーサルオブジェクトのセグメンテーションにおいて、その壮大なパフォーマンスを示している。
しかし、医用画像の影画像や病変など特定のターゲットを特定できない。
影検出にSAMモデルを適用するAdapterShadowを提案する。
論文 参考訳(メタデータ) (2023-11-15T11:51:10Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
シングルイメージのシャドー削除は、まだ解決されていない重要なタスクである。
既存のディープラーニングベースのアプローチのほとんどは、シャドウを直接削除しようとするが、シャドウをうまく扱えない。
本稿では,影を段階的に除去する簡易かつ効果的なプログレッシブ・リカレント・ネットワーク(PRNet)を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:42:45Z) - SILT: Shadow-aware Iterative Label Tuning for Learning to Detect Shadows
from Noisy Labels [53.30604926018168]
本稿では,シャドウラベルのノイズを明示的に考慮し,自己学習で深層モデルを訓練する,シャドウ対応反復ラベルチューニングフレームワークSILTを提案する。
また,グローバルな局所融合とシャドウ・アウェア・フィルタリングを併用した簡易かつ効果的なラベルチューニング戦略を考案し,ノイズラベルの大幅な改善を図った。
その結果,SILTで訓練した単純なU-Netでさえ,最先端の手法を大きなマージンで上回ることができることがわかった。
論文 参考訳(メタデータ) (2023-08-23T11:16:36Z) - Detect Any Shadow: Segment Anything for Video Shadow Detection [105.19693622157462]
影を検出するためのセグメンテーションモデル(SAM)を微調整するフレームワークであるShadowSAMを提案する。
長時間の注意機構と組み合わせることで、効率的な映像陰影検出が可能となる。
提案手法は,従来のビデオシャドウ検出手法と比較して高速な推論速度を示す。
論文 参考訳(メタデータ) (2023-05-26T07:39:10Z) - DeS3: Adaptive Attention-driven Self and Soft Shadow Removal using ViT Similarity [54.831083157152136]
本稿では,適応的注意とViT類似性に基づいて,ハード,ソフト,セルフシャドーを除去する手法を提案する。
提案手法はSRD, AISTD, LRSS, USR, UIUCデータセットの最先端手法より優れている。
論文 参考訳(メタデータ) (2022-11-15T12:15:29Z) - R2D: Learning Shadow Removal to Enhance Fine-Context Shadow Detection [64.10636296274168]
現在のシャドウ検出方法は、小さく、不明瞭で、ぼやけたエッジを持つシャドウ領域を検出する際には、性能が良くない。
本稿では,深層ニューラルネットワークを修復訓練(シャドウ除去)するRestore to Detect(R2D)という新しい手法を提案する。
提案手法は,近年の手法に比べて微妙なコンテキストの検出が可能でありながら,影検出性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-20T15:09:22Z) - From Shadow Generation to Shadow Removal [19.486543304598264]
シャドウ生成を弱教師付きシャドウ除去に活用するG2R-ShadowNetを提案する。
提案されたG2R-ShadowNetは3つのサブネットワークで構成されている。
特に、シャドウ生成サブネットは非シャドウ領域をシャドウ領域とスタイリングし、シャドウ除去サブネットをトレーニングするためのペアデータを生成する。
論文 参考訳(メタデータ) (2021-03-24T05:49:08Z) - Physics-based Shadow Image Decomposition for Shadow Removal [36.41558227710456]
陰影除去のための新しい深層学習法を提案する。
影形成の物理モデルにインスパイアされ、線形照明変換を用いて画像内の影効果をモデル化する。
最も困難なシャドウ除去データセットでフレームワークをトレーニングし、テストします。
論文 参考訳(メタデータ) (2020-12-23T23:06:38Z) - Self-Supervised Shadow Removal [130.6657167667636]
条件付きマスクを用いた自己教師付き学習による教師なしシングルイメージシャドウ除去ソリューションを提案する。
既存の文献とは対照的に、一対のシャドウとシャドウのない画像は必要とせず、自己スーパービジョンに頼り、画像にシャドウを取り除いて追加するために深いモデルを共同で学習する。
論文 参考訳(メタデータ) (2020-10-22T11:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。