Single-Model Attribution of Generative Models Through Final-Layer Inversion
- URL: http://arxiv.org/abs/2306.06210v5
- Date: Wed, 26 Jun 2024 12:31:04 GMT
- Title: Single-Model Attribution of Generative Models Through Final-Layer Inversion
- Authors: Mike Laszkiewicz, Jonas Ricker, Johannes Lederer, Asja Fischer,
- Abstract summary: We propose a new approach for single-model attribution in the open-world setting based on final-layer inversion and anomaly detection.
We show that the utilized final-layer inversion can be reduced to a convex lasso optimization problem, making our approach theoretically sound and computationally efficient.
- Score: 16.506531590300806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs in generative modeling have sparked interest in practical single-model attribution. Such methods predict whether a sample was generated by a specific generator or not, for instance, to prove intellectual property theft. However, previous works are either limited to the closed-world setting or require undesirable changes to the generative model. We address these shortcomings by, first, viewing single-model attribution through the lens of anomaly detection. Arising from this change of perspective, we propose FLIPAD, a new approach for single-model attribution in the open-world setting based on final-layer inversion and anomaly detection. We show that the utilized final-layer inversion can be reduced to a convex lasso optimization problem, making our approach theoretically sound and computationally efficient. The theoretical findings are accompanied by an experimental study demonstrating the effectiveness of our approach and its flexibility to various domains.
Related papers
- Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Model Reconstruction Using Counterfactual Explanations: A Perspective From Polytope Theory [9.771997770574947]
We analyze how model reconstruction using counterfactuals can be improved.
Our main contribution is to derive novel theoretical relationships between the error in model reconstruction and the number of counterfactual queries.
arXiv Detail & Related papers (2024-05-08T18:52:47Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
Particle variational inference (PVI) uses an ensemble of models as an empirical approximation for the posterior distribution.
PVI iteratively updates each model with a repulsion force to ensure the diversity of the optimized models.
We derive a novel generalization error bound and show that it can be reduced by enhancing the diversity of models.
arXiv Detail & Related papers (2021-06-09T12:13:51Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Convex Smoothed Autoencoder-Optimal Transport model [0.0]
We develop a new generative model capable of generating samples which resemble the observed data, and is free from mode collapse and mode mixture.
Our model is inspired by the recently proposed Autoencoder- Optimal Transport (AE-OT) model and tries to improve on it by addressing the problems faced by the AE-OT model itself.
arXiv Detail & Related papers (2021-01-14T15:55:20Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Maximum Entropy Model Rollouts: Fast Model Based Policy Optimization
without Compounding Errors [10.906666680425754]
We propose a Dyna-style model-based reinforcement learning algorithm, which we called Maximum Entropy Model Rollouts (MEMR)
To eliminate the compounding errors, we only use our model to generate single-step rollouts.
arXiv Detail & Related papers (2020-06-08T21:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.