論文の概要: Boosting Language Models Reasoning with Chain-of-Knowledge Prompting
- arxiv url: http://arxiv.org/abs/2306.06427v1
- Date: Sat, 10 Jun 2023 12:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 19:05:22.478298
- Title: Boosting Language Models Reasoning with Chain-of-Knowledge Prompting
- Title(参考訳): Chain-of-Knowledge Promptingによる言語モデルの強化
- Authors: Jianing Wang, Qiushi Sun, Nuo Chen, Xiang Li, Ming Gao
- Abstract要約: CoK(Chain-of-Knowledge)は、構造三重の形で明確な知識証拠を引き出すことを目的としている。
さらに, 推論チェーンの信頼性を推定するF2-Verification法を導入する。
広汎な実験により,本手法はコモンセンス,事実,記号,算術的推論タスクの性能をさらに向上させることができることが示された。
- 参考スコア(独自算出の注目度): 14.443107383265922
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, Chain-of-Thought (CoT) prompting has delivered success on complex
reasoning tasks, which aims at designing a simple prompt like ``Let's think
step by step'' or multiple in-context exemplars with well-designed rationales
to elicit Large Language Models (LLMs) to generate intermediate reasoning
steps. However, the generated rationales often come with mistakes, making
unfactual and unfaithful reasoning chains. To mitigate this brittleness, we
propose a novel Chain-of-Knowledge (CoK) prompting, where we aim at eliciting
LLMs to generate explicit pieces of knowledge evidence in the form of structure
triple. This is inspired by our human behaviors, i.e., we can draw a mind map
or knowledge map as the reasoning evidence in the brain before answering a
complex question. Benefiting from CoK, we additionally introduce a
F^2-Verification method to estimate the reliability of the reasoning chains in
terms of factuality and faithfulness. For the unreliable response, the wrong
evidence can be indicated to prompt the LLM to rethink. Extensive experiments
demonstrate that our method can further improve the performance of commonsense,
factual, symbolic, and arithmetic reasoning tasks.
- Abstract(参考訳): これは ``let's think step by step'''' のような単純なプロンプトを設計することや、複数のコンテキスト内exemplarsを適切に設計し、大きな言語モデル(llm)を導出して中間的な推論ステップを生成することを目的としている。
しかし、生成された合理性はしばしば間違いを伴い、非事実的で不誠実な推論連鎖を作る。
この脆さを緩和するために,我々は,LLMを3重構造形式で明示的な知識証拠を生成することを目的とした,新しい知識の連鎖(CoK)プロンプトを提案する。
これは人間の行動、つまり、複雑な質問に答える前に脳の推論証拠としてマインドマップや知識マップを描けることにインスパイアされている。
さらに, 事実性および忠実性の観点から, 推論チェーンの信頼性を推定するF^2-Verification法を導入する。
信頼できない反応については、誤った証拠がLSMに再考を促すために示される。
広範な実験により,本手法はコモンセンス,ファクトラル,シンボリック,算術推論タスクの性能をさらに向上できることが証明された。
関連論文リスト
- Markov Chain of Thought for Efficient Mathematical Reasoning [10.678633785012691]
多段階の思考の連鎖(CoT)は、推論ステップとタスク固有のアクションの論理構造から恩恵を受ける。
我々は、標準多段階CoTを思考のマルコフ連鎖(MCoT)として概念化する。
論文 参考訳(メタデータ) (2024-10-23T07:53:29Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
本稿では,知識グラフ質問応答を強化する検索拡張推論手法FiDeLiSを提案する。
FiDeLiSはキーワード付き検索機構を使用し、KGのベクトルベースインデックスから関連エンティティと関係をフェッチする。
我々のアプローチの特徴は、推論経路の選択を最適化するために、自然言語とビームサーチをブレンドすることである。
論文 参考訳(メタデータ) (2024-05-22T17:56:53Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - Deceptive Semantic Shortcuts on Reasoning Chains: How Far Can Models Go without Hallucination? [73.454943870226]
本研究はセマンティックアソシエーションによって誘発される特定の種類の幻覚の研究である。
この現象を定量化するために,EureQAと呼ばれる新しい探索手法とベンチマークを提案する。
論文 参考訳(メタデータ) (2023-11-16T09:27:36Z) - Implicit Chain of Thought Reasoning via Knowledge Distillation [58.80851216530288]
思考推論ステップの連鎖を明示的に生成する代わりに、言語モデルの内部の隠れ状態を使用して暗黙の推論を行います。
このアプローチにより、明示的にチェーン・オブ・シントなしでは解決不可能なタスクを、非チェーン・オブ・シントに匹敵する速度で解決できることが分かりました。
論文 参考訳(メタデータ) (2023-11-02T17:59:49Z) - Deductive Verification of Chain-of-Thought Reasoning [22.79166959432764]
大型言語モデル(LLM)は、様々な推論タスクを実行する上で、Chain-of-Thoughtの恩恵を受ける。
CoTはモデルがより包括的な推論プロセスを生成することを可能にするが、中間的推論ステップに重点を置くことは、必然的に幻覚や累積エラーをもたらす可能性がある。
本研究では,自然言語に基づく帰納的推論形式であるNatural Programを提案する。
論文 参考訳(メタデータ) (2023-06-06T17:18:56Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
CoT(Chain-of-Thought)の促進により,大規模言語モデル(LLM)の多段階推論能力が劇的に向上する
無効な実演でもCoT推論が可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T05:20:54Z) - Maieutic Prompting: Logically Consistent Reasoning with Recursive
Explanations [71.2950434944196]
ノイズや一貫性のない言語モデルでさえも問題に対する正しい答えを推測するMaieutic Promptingを開発する。
Maieutic Promptingは最先端のプロンプト法よりも最大20%精度が高い。
論文 参考訳(メタデータ) (2022-05-24T06:36:42Z) - Exploiting Reasoning Chains for Multi-hop Science Question Answering [51.86289192292466]
我々のフレームワークは、コーパス固有のアノテーションを必要とせずに説明可能な推論を行うことができる。
ローカルチェーン情報とグローバルチェーン情報の両方に関するTextitChain対応の損失は、生成されたチェーンが遠隔監視信号として機能するようにも設計されている。
論文 参考訳(メタデータ) (2021-09-07T07:22:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。