論文の概要: FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering
- arxiv url: http://arxiv.org/abs/2405.13873v2
- Date: Thu, 10 Oct 2024 15:27:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:29:37.813997
- Title: FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering
- Title(参考訳): FiDeLiS: 知識グラフ質問回答のための大規模言語モデルにおける忠実な推論
- Authors: Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, Bryan Hooi,
- Abstract要約: 本稿では,知識グラフ質問応答を強化する検索拡張推論手法FiDeLiSを提案する。
FiDeLiSはキーワード付き検索機構を使用し、KGのベクトルベースインデックスから関連エンティティと関係をフェッチする。
我々のアプローチの特徴は、推論経路の選択を最適化するために、自然言語とビームサーチをブレンドすることである。
- 参考スコア(独自算出の注目度): 46.41364317172677
- License:
- Abstract: Large language models are often challenged by generating erroneous or `hallucinated' responses, especially in complex reasoning tasks. To mitigate this, we propose a retrieval augmented reasoning method, FiDeLiS, which enhances knowledge graph question answering by anchoring responses to structured, verifiable reasoning paths. FiDeLiS uses a keyword-enhanced retrieval mechanism that fetches relevant entities and relations from a vector-based index of KGs to ensure high-recall retrieval. Once these entities and relations are retrieved, our method constructs candidate reasoning paths which are then refined using a stepwise beam search. This ensures that all the paths we create can be confidently linked back to KGs, ensuring they are accurate and reliable. A distinctive feature of our approach is its blend of natural language planning with beam search to optimize the selection of reasoning paths. Moreover, we redesign the way reasoning paths are scored by transforming this process into a deductive reasoning task, allowing the LLM to assess the validity of the paths through deductive reasoning rather than traditional logit-based scoring. This helps avoid misleading reasoning chains and reduces unnecessary computational demand. Extensive experiments demonstrate that our method, even as a training-free method which has lower computational costs and superior generality, outperforms established strong baselines across three datasets.
- Abstract(参考訳): 大規模な言語モデルは、特に複雑な推論タスクにおいて、誤った、あるいは'ジャッカレート'な応答を生成することでしばしば挑戦される。
これを軽減するために、構造化された検証可能な推論パスに対する応答をアンカーすることで知識グラフ質問応答を強化する検索拡張推論手法FiDeLiSを提案する。
FiDeLiSはキーワード付き検索機構を使用して、KGのベクトルベースのインデックスから関連エンティティと関係をフェッチして、ハイリコール検索を保証する。
これらのエンティティと関係が検索されると、ステップワイズ・ビーム・サーチによって洗練される候補推論経路を構築する。
これにより、私たちが作り出すすべてのパスが確実にKGにリンクされ、正確で信頼性が保証されます。
我々のアプローチの特徴は、推論経路の選択を最適化するために、自然言語とビームサーチをブレンドすることである。
さらに, 従来のロジットに基づくスコアリングよりも, 帰納的推論による経路の妥当性を評価できるように, この過程を帰納的推論タスクに変換することにより, 推論経路のスコア付け方法を再設計する。
これにより、推論チェーンの誤解を招くことを避け、不要な計算要求を減らすことができる。
大規模な実験により, 計算コストが低く, 一般性も優れている訓練不要な手法であっても, 3つのデータセットに対して高いベースラインを確立できた。
関連論文リスト
- KARPA: A Training-free Method of Adapting Knowledge Graph as References for Large Language Model's Reasoning Path Aggregation [2.698553758512034]
大規模言語モデル(LLM)は様々なタスクにまたがる例外的なパフォーマンスを示すが、幻覚や知識のタイムラインに影響されることが多い。
本稿では,LLMのグローバルな計画能力を活用したKG推論手法であるKARPA(Knowledge Graph Assisted Reasoning Path Aggregation)を提案する。
KARPAはKGQAタスクで最先端のパフォーマンスを実現し、高い効率と精度を提供する。
論文 参考訳(メタデータ) (2024-12-30T14:58:46Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
大きな言語モデル(LLM)は強い推論能力を示すが、幻覚や時代遅れの知識のような制限に直面している。
本稿では、サブグラフを検索する知識グラフ(KG)ベースのRetrieval-Augmented Generation(RAG)フレームワークを拡張するSubgraphRAGを紹介する。
提案手法は,高効率かつフレキシブルなサブグラフ検索を実現するために,並列3重装飾機構を備えた軽量多層パーセプトロンを革新的に統合する。
論文 参考訳(メタデータ) (2024-10-28T04:39:32Z) - Mindful-RAG: A Study of Points of Failure in Retrieval Augmented Generation [11.471919529192048]
LLM(Large Language Models)は、コヒーレントで文脈的に関係のあるテキストを生成するのに熟練した言語モデルである。
Retrieval-augmented Generation (RAG) システムは、構造化知識グラフ(KG)のような外部知識ソースを組み込むことによってこれを緩和する。
本研究は,既存のKG法に基づくRAG法における誤りパターンの解析と8つの臨界故障点の同定により,このジレンマについて検討した。
論文 参考訳(メタデータ) (2024-07-16T23:50:07Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションで前例のない性能を示している。
LLMは実際に不正確な出力、すなわち幻覚の問題を発生させることが知られている。
上記の問題に対処する3段階の原理的フレームワークKELPを提案する。
論文 参考訳(メタデータ) (2024-06-19T21:45:20Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
本稿では,知識グラフ(KGQA)に関する質問応答について述べる。
グラフニューラルネットワーク(GNN)とLarge Language Modelsを相乗化してKGを推論するExplore-then-Determine(EtD)フレームワークを提案する。
EtDは最先端のパフォーマンスを達成し、忠実な推論結果を生成する。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses [20.635793525894872]
大規模言語モデル(LLM)の精度と信頼性を向上させるための仮説知識グラフ強化(HyKGE)フレームワークを開発する。
具体的には、HyKGEはゼロショット能力とLLMの豊富な知識を仮説出力で探索し、KGの可能な探索方向を拡張する。
2つのLLMターボを用いた2つの中国医学多重選択質問データセットと1つの中国のオープンドメイン医療Q&Aデータセットの実験は、精度と説明可能性の観点からHyKGEの優位性を実証した。
論文 参考訳(メタデータ) (2023-12-26T04:49:56Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。