論文の概要: BlockTheFall: Wearable Device-based Fall Detection Framework Powered by
Machine Learning and Blockchain for Elderly Care
- arxiv url: http://arxiv.org/abs/2306.06452v1
- Date: Sat, 10 Jun 2023 14:18:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 18:55:34.892649
- Title: BlockTheFall: Wearable Device-based Fall Detection Framework Powered by
Machine Learning and Blockchain for Elderly Care
- Title(参考訳): BlockTheFall:高齢者のための機械学習とブロックチェーンを利用したウェアラブルデバイスベースの転倒検出フレームワーク
- Authors: Bilash Saha, Md Saiful Islam, Abm Kamrul Riad, Sharaban Tahora,
Hossain Shahriar, Sweta Sneha
- Abstract要約: ウェアラブルデバイスベースの転倒検出フレームワークである"BlockTheFall"は、ウェアラブルデバイスからのセンサデータを使用して、フォールをリアルタイムで検出する。
収集したセンサデータを機械学習アルゴリズムを用いて解析する。
提案するフレームワークは、ブロックチェーン技術を使用して、フォールイベントデータを格納し、検証する。
- 参考スコア(独自算出の注目度): 0.44739156031315913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Falls among the elderly are a major health concern, frequently resulting in
serious injuries and a reduced quality of life. In this paper, we propose
"BlockTheFall," a wearable device-based fall detection framework which detects
falls in real time by using sensor data from wearable devices. To accurately
identify patterns and detect falls, the collected sensor data is analyzed using
machine learning algorithms. To ensure data integrity and security, the
framework stores and verifies fall event data using blockchain technology. The
proposed framework aims to provide an efficient and dependable solution for
fall detection with improved emergency response, and elderly individuals'
overall well-being. Further experiments and evaluations are being carried out
to validate the effectiveness and feasibility of the proposed framework, which
has shown promising results in distinguishing genuine falls from simulated
falls. By providing timely and accurate fall detection and response, this
framework has the potential to substantially boost the quality of elderly care.
- Abstract(参考訳): 高齢者の転倒は大きな健康上の懸念であり、重傷を負い、生活の質が低下することが多い。
本稿では,ウェアラブルデバイスからのセンサデータを用いて,リアルタイムに落下を検出するウェアラブルデバイスベースの転倒検出フレームワークであるBlockTheFallを提案する。
パターンを正確に識別し,フォールを検出するために,機械学習アルゴリズムを用いて収集したセンサデータを解析する。
データ整合性とセキュリティを保証するため、ブロックチェーン技術を使用して、フォールイベントデータを格納し、検証する。
提案手法は,高齢者全体の健康状態と緊急対応の改善を伴う転倒検出のための効率的かつ信頼性の高いソリューションを提供することを目的としている。
また,本手法の有効性と実現性を検証するための実験や評価が行われ,本手法の有効性が実証され,本手法の有効性が実証された。
タイムリーかつ正確な転倒検出および応答を提供することにより、介護の質を大幅に向上させる可能性がある。
関連論文リスト
- Computer-Aided Fall Recognition Using a Three-Stream Spatial-Temporal GCN Model with Adaptive Feature Aggregation [0.5235143203977018]
転倒予防は現代医療において特に高齢者にとって最重要である。
高齢者の生活を救うためには,コンピュータ支援による転倒検知システムが不可欠である。
本稿では,3流時空間特徴量に基づく転倒検出システムを提案する。
論文 参考訳(メタデータ) (2024-08-22T08:40:04Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Credible Teacher for Semi-Supervised Object Detection in Open Scene [106.25850299007674]
Open Scene Semi-Supervised Object Detection (O-SSOD)では、ラベル付きデータはラベル付きデータで観測されていない未知のオブジェクトを含む可能性がある。
より不確実性が、偽ラベルのローカライズと分類精度の低下につながるため、主に自己学習に依存する現在の手法には有害である。
我々は,不確実な擬似ラベルがモデルに誤解をもたらすのを防ぐための,エンドツーエンドのフレームワークであるCredible Teacherを提案する。
論文 参考訳(メタデータ) (2024-01-01T08:19:21Z) - Machine Learning and Feature Ranking for Impact Fall Detection Event
Using Multisensor Data [1.9731252964716424]
我々は、マルチセンサUP-FALLデータセットから最も関連性の高い特徴を特定するために、特徴選択プロセスを採用している。
次に、インパクトモーメントの検出における各種機械学習モデルの効率性を評価する。
この結果から, 落下検出にマルチセンサデータを活用する能力を示すとともに, 衝突検出の精度向上を実現した。
論文 参考訳(メタデータ) (2023-12-21T01:05:44Z) - Recall-driven Precision Refinement: Unveiling Accurate Fall Detection
using LSTM [0.0]
本稿では,高齢者の転倒事故に対するプレッシャー的懸念に対処するために,正確な転倒検知システムを開発することで,革新的なアプローチを提案する。
提案システムは,加速度センサやジャイロセンサなどの最先端技術とディープラーニングモデル,特にLong Short-Term Memory(LSTM)ネットワークを組み合わせる。
本稿では,LSTMモデルのアーキテクチャとパラメータを戦略的に微調整し,システムの性能を最適化するプルーニング手法を提案する。
論文 参考訳(メタデータ) (2023-09-09T20:17:39Z) - CareFall: Automatic Fall Detection through Wearable Devices and AI
Methods [0.0]
CareFallは、ウェアラブルデバイスと人工知能(AI)メソッドに基づいた自動転倒検知システム(FDS)である。
CareFallは、スマートウォッチから抽出された加速度計とジャイロスコープの時間信号について検討している。
論文 参考訳(メタデータ) (2023-07-11T14:08:51Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
本研究では,大小の畳み込みニューラルネットワークとゲートリカレントユニットを組み合わせたアンサンブルモデルを提案する。
提案したモデルは、それぞれ92.54%、96.13%、94.26%のリコール、精度、Fスコアを達成する。
論文 参考訳(メタデータ) (2023-04-13T08:30:46Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。