論文の概要: Bed-Attached Vibration Sensor System: A Machine Learning Approach for Fall Detection in Nursing Homes
- arxiv url: http://arxiv.org/abs/2412.04950v1
- Date: Fri, 06 Dec 2024 11:08:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:17.587734
- Title: Bed-Attached Vibration Sensor System: A Machine Learning Approach for Fall Detection in Nursing Homes
- Title(参考訳): ベッド付振動センサシステム:看護施設における転倒検知のための機械学習アプローチ
- Authors: Thomas Bartz-Beielstein, Axel Wellendorf, Noah Pütz, Jens Brandt, Alexander Hinterleitner, Richard Schulz, Richard Scholz, Olaf Mersmann, Robin Knabe,
- Abstract要約: 本研究は,医療用ベッドに内蔵された自動転倒検知システムの開発であり,ウェアラブルやビデオ監視を通じて患者のプライバシーを損なうことなく,患者の安全性を高めることを目的としている。
ベッドフレームを介して伝達される機械的振動は、短時間のフーリエ変換を用いて処理され、畳み込みニューラルネットワークを用いて、異なる人間の落下パターンの堅牢な分類を可能にする。
利用可能なデータが限られているにもかかわらず、提案システムは、転倒に対する正確かつ迅速な対応の可能性を示し、健康への影響を軽減し、高齢化人口のニーズに対処する。
- 参考スコア(独自算出の注目度): 33.45861095003339
- License:
- Abstract: The increasing shortage of nursing staff and the acute risk of falls in nursing homes pose significant challenges for the healthcare system. This study presents the development of an automated fall detection system integrated into care beds, aimed at enhancing patient safety without compromising privacy through wearables or video monitoring. Mechanical vibrations transmitted through the bed frame are processed using a short-time Fourier transform, enabling robust classification of distinct human fall patterns with a convolutional neural network. Challenges pertaining to the quantity and diversity of the data are addressed, proposing the generation of additional data with a specific emphasis on enhancing variation. While the model shows promising results in distinguishing fall events from noise using lab data, further testing in real-world environments is recommended for validation and improvement. Despite limited available data, the proposed system shows the potential for an accurate and rapid response to falls, mitigating health implications, and addressing the needs of an aging population. This case study was performed as part of the ZIM Project. Further research on sensors enhanced by artificial intelligence will be continued in the ShapeFuture Project.
- Abstract(参考訳): 介護職員の不足と介護施設の転倒の急激なリスクは、医療システムにとって大きな課題となっている。
本研究は,医療用ベッドに内蔵された自動転倒検知システムの開発であり,ウェアラブルやビデオ監視を通じて患者のプライバシーを損なうことなく,患者の安全性を高めることを目的としている。
ベッドフレームを介して伝達される機械振動は、短時間のフーリエ変換を用いて処理され、畳み込みニューラルネットワークを用いて、異なる人間の落下パターンの堅牢な分類を可能にする。
データの量と多様性に関する課題に対処し、変動の増大に特に重点を置いた追加データの生成を提案する。
実験室データを用いて秋の事象とノイズを区別する有望な結果を示す一方で、実環境におけるさらなるテストは検証と改善のために推奨される。
利用可能なデータが限られているにもかかわらず、提案システムは、転倒に対する正確かつ迅速な対応の可能性を示し、健康への影響を軽減し、高齢化人口のニーズに対処する。
このケーススタディは、ZIMプロジェクトの一部として実施された。
人工知能によって強化されたセンサーに関するさらなる研究は、ShapeFuture Projectで継続される。
関連論文リスト
- Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
本研究では,AutoEncoder-based Machine Learning (ML) 手法を用いて,ASD検出のための新しい半教師付きアプローチを提案する。
この目的に特化して設計された真剣なゲームを通じて手作業で収集したデータを利用する。
ゲーミフィケーションされたアプリケーションによって収集されたセンシティブなデータは、プライバシー漏洩の影響を受けやすいため、フェデレートラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-25T23:00:12Z) - Computer-Aided Fall Recognition Using a Three-Stream Spatial-Temporal GCN Model with Adaptive Feature Aggregation [0.5235143203977018]
転倒予防は現代医療において特に高齢者にとって最重要である。
高齢者の生活を救うためには,コンピュータ支援による転倒検知システムが不可欠である。
本稿では,3流時空間特徴量に基づく転倒検出システムを提案する。
論文 参考訳(メタデータ) (2024-08-22T08:40:04Z) - Explainable Machine Learning-Based Security and Privacy Protection Framework for Internet of Medical Things Systems [1.8434042562191815]
インターネット・オブ・メディカル・モノ(IoMT)は、従来の医療境界を超越し、反応性治療から予防への転換を可能にする。
その利点は、処理されたデータの感度と価値のために、ユーザの生活を危険にさらす、重大なセキュリティ上の課題に対処されている。
新しいIDS(Intrusion Detection Systems)フレームワークを導入し、ANN(Artificial Neural Networks)を侵入検知に利用し、FL(Federated Learning)をプライバシ保護に活用する。
論文 参考訳(メタデータ) (2024-03-14T11:57:26Z) - Machine Learning and Feature Ranking for Impact Fall Detection Event
Using Multisensor Data [1.9731252964716424]
我々は、マルチセンサUP-FALLデータセットから最も関連性の高い特徴を特定するために、特徴選択プロセスを採用している。
次に、インパクトモーメントの検出における各種機械学習モデルの効率性を評価する。
この結果から, 落下検出にマルチセンサデータを活用する能力を示すとともに, 衝突検出の精度向上を実現した。
論文 参考訳(メタデータ) (2023-12-21T01:05:44Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
本研究では,大小の畳み込みニューラルネットワークとゲートリカレントユニットを組み合わせたアンサンブルモデルを提案する。
提案したモデルは、それぞれ92.54%、96.13%、94.26%のリコール、精度、Fスコアを達成する。
論文 参考訳(メタデータ) (2023-04-13T08:30:46Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。