CARNA: Characterizing Advanced heart failure Risk and hemodyNAmic
phenotypes using learned multi-valued decision diagrams
- URL: http://arxiv.org/abs/2306.06801v1
- Date: Sun, 11 Jun 2023 22:56:59 GMT
- Title: CARNA: Characterizing Advanced heart failure Risk and hemodyNAmic
phenotypes using learned multi-valued decision diagrams
- Authors: Josephine Lamp, Yuxin Wu, Steven Lamp, Prince Afriyie, Kenneth
Bilchick, Lu Feng, Sula Mazimba
- Abstract summary: CARNA is a hemodynamic risk stratification and phenotyping framework for advanced heart failure.
It takes advantage of the explainability and expressivity of machine learned Multi-Valued Decision Diagrams (MVDDs)
It incorporates invasive hemodynamics and can make predictions on missing data.
- Score: 6.599394944440605
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Early identification of high risk heart failure (HF) patients is key to
timely allocation of life-saving therapies. Hemodynamic assessments can
facilitate risk stratification and enhance understanding of HF trajectories.
However, risk assessment for HF is a complex, multi-faceted decision-making
process that can be challenging. Previous risk models for HF do not integrate
invasive hemodynamics or support missing data, and use statistical methods
prone to bias or machine learning methods that are not interpretable. To
address these limitations, this paper presents CARNA, a hemodynamic risk
stratification and phenotyping framework for advanced HF that takes advantage
of the explainability and expressivity of machine learned Multi-Valued Decision
Diagrams (MVDDs). This interpretable framework learns risk scores that predict
the probability of patient outcomes, and outputs descriptive patient phenotypes
(sets of features and thresholds) that characterize each predicted risk score.
CARNA incorporates invasive hemodynamics and can make predictions on missing
data. The CARNA models were trained and validated using a total of five
advanced HF patient cohorts collected from previous trials, and compared with
six established HF risk scores and three traditional ML risk models. CARNA
provides robust risk stratification, outperforming all previous benchmarks.
Although focused on advanced HF, the CARNA framework is general purpose and can
be used to learn risk stratifications for other diseases and medical
applications.
Related papers
- HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
HACSurv is a survival analysis method that learns structures and cause-specific survival functions from data with competing risks.
By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions.
arXiv Detail & Related papers (2024-10-19T18:52:18Z) - Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - Fuzzy Rule based Intelligent Cardiovascular Disease Prediction using Complex Event Processing [0.8668211481067458]
Cardiovascular disease (CVDs) is a rapidly rising global concern due to unhealthy diets, lack of physical activity, and other factors.
Recent research has focused on accurate and timely disease prediction to reduce risk and fatalities.
We propose a fuzzy rule-based system for monitoring clinical data to provide real-time decision support.
arXiv Detail & Related papers (2024-09-19T16:36:24Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
This project aims to develop and assess predictive models for the timely identification of cardiac arrest incidents.
We employ machine learning algorithms like XGBoost, Gradient Boosting, and Naive Bayes, alongside a deep learning (DL) approach with Recurrent Neural Networks (RNNs)
Rigorous experimentation and validation revealed the superior performance of the RNN model.
arXiv Detail & Related papers (2024-09-03T19:18:16Z) - Early Risk Assessment Model for ICA Timing Strategy in Unstable Angina Patients Using Multi-Modal Machine Learning [5.070772577047069]
Invasive coronary arteriography (ICA) is recognized as the gold standard for diagnosing cardiovascular diseases, including unstable angina (UA)
Unlike myocardial infarction, UA does not have specific indicators like ST-segment deviation or cardiac enzymes, making risk assessment complex.
Our study aims to enhance the early risk assessment for UA patients by utilizing machine learning algorithms.
arXiv Detail & Related papers (2024-08-08T07:24:28Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
We intend to create a new risk assessment methodology that combines the best characteristics of both risk score and machine learning models.
The proposed approach achieved testing results identical to the standard LR, but offers superior interpretability and personalization.
The reliability estimation of individual predictions presented a great correlation with the misclassifications rate.
arXiv Detail & Related papers (2021-10-15T19:33:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.