論文の概要: Improving Forecasts for Heterogeneous Time Series by "Averaging", with
Application to Food Demand Forecast
- arxiv url: http://arxiv.org/abs/2306.07119v1
- Date: Mon, 12 Jun 2023 13:52:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 14:31:53.887059
- Title: Improving Forecasts for Heterogeneous Time Series by "Averaging", with
Application to Food Demand Forecast
- Title(参考訳): 平均化」による不均一時系列予測の改善と食料需要予測への応用
- Authors: Lukas Neubauer, Peter Filzmoser
- Abstract要約: 本稿では,k-Nearest Neighbor方式で近隣地区を構築するために,動的時間ワープの類似度を利用した一般的なフレームワークを提案する。
平均化を行ういくつかの方法が提案され、理論的議論は平均化が予測に有用であることを示す。
- 参考スコア(独自算出の注目度): 1.066048003460524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common forecasting setting in real world applications considers a set of
possibly heterogeneous time series of the same domain. Due to different
properties of each time series such as length, obtaining forecasts for each
individual time series in a straight-forward way is challenging. This paper
proposes a general framework utilizing a similarity measure in Dynamic Time
Warping to find similar time series to build neighborhoods in a k-Nearest
Neighbor fashion, and improve forecasts of possibly simple models by averaging.
Several ways of performing the averaging are suggested, and theoretical
arguments underline the usefulness of averaging for forecasting. Additionally,
diagnostics tools are proposed allowing a deep understanding of the procedure.
- Abstract(参考訳): 実世界のアプリケーションにおける一般的な予測設定は、同一領域のおそらく異種時系列の集合を考える。
長さなどの各時系列の特性が異なるため、各時系列の予測を直進的に得ることは困難である。
本稿では,k-ネアレスト近傍の近傍に類似する時系列を探索するために,動的時間ウォーピングにおける類似度尺度を用いた一般的な枠組みを提案し,平均化による簡易モデルの予測を改善する。
平均化を行ういくつかの方法が提案され、理論的議論は平均化が予測に有用であることを示す。
さらに、診断ツールの提案により、手順の深い理解が可能になる。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
我々はtexttMECATS という異種の専門家フレームワークを混合して導入する。
集約階層を通じて関連付けられた時系列の集合の値を同時に予測する。
異なる種類の予測モデルを個別の専門家として使用することで、各モデルの形式を対応する時系列の性質に合わせて調整することができる。
論文 参考訳(メタデータ) (2021-12-22T05:05:30Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Hierarchically Regularized Deep Forecasting [18.539846932184012]
本稿では,グローバルな時系列集合に沿って時系列を分解した階層予測のための新しい手法を提案する。
過去の手法とは異なり、我々の手法は時系列予測の一貫性を維持しつつ、推論時にスケーラブルである。
論文 参考訳(メタデータ) (2021-06-14T17:38:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。