Self-testing of semisymmetric informationally complete measurements in a qubit prepare-and-measure scenario
- URL: http://arxiv.org/abs/2306.07248v4
- Date: Wed, 29 May 2024 17:00:11 GMT
- Title: Self-testing of semisymmetric informationally complete measurements in a qubit prepare-and-measure scenario
- Authors: Gábor Drótos, Károly F. Pál, Tamás Vértesi,
- Abstract summary: Self-testing is a powerful method for certifying quantum systems.
In this study, we focus on the self-testing of a specific type of non-projective qubit measurements.
Our results pave the way towards self-testing any extremal qubit POVM within a potentially minimal PM scenario.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-testing is a powerful method for certifying quantum systems. Initially proposed in the device-independent (DI) setting, self-testing has since been relaxed to the semi-device-independent (semi-DI) setting. In this study, we focus on the self-testing of a specific type of non-projective qubit measurements belonging to a one-parameter family, using the semi-DI prepare-and-measure (PM) scenario. Remarkably, we identify the simplest PM scenario discovered so far, involving only four preparations and four measurements, for self-testing the fourth measurement. This particular measurement is a four-outcome non-projective positive operator-valued measure (POVM) and falls in the class of semisymmetric informationally complete (semi-SIC) POVMs introduced by Geng et al. [Phys. Rev. Lett. 126, 100401 (2021)]. To achieve this, we develop analytical techniques for semi-DI self-testing in the PM scenario. Our results shall pave the way towards self-testing any extremal qubit POVM within a potentially minimal PM scenario.
Related papers
- Towards minimal self-testing of qubit states and measurements in prepare-and-measure scenarios [0.0]
Self-testing is a promising approach to certifying quantum states or measurements.
We show how to self-test any four- (three-) outcome extremal positive operator-valued measure using a linear witness.
One of our constructions achieves self-testing of any number of states with the help of as many projective measurements.
arXiv Detail & Related papers (2024-06-12T21:47:19Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Robust self-testing of multipartite GHZ-state measurements in quantum
networks [15.037030262271992]
We develop a general self-testing procedure for multipartite generalized GHZ-state measurements.
The key step is self-testing all measurement eigenstates for a general N-qubit multipartite GHZ-state measurement.
It turns out that the existing result for three-qubit GHZ-state measurement is recovered as a special case.
arXiv Detail & Related papers (2021-12-25T14:09:21Z) - Self-testing of any pure entangled state with minimal number of
measurements and optimal randomness certification in one-sided
device-independent scenario [0.0]
certification of quantum systems and their properties has become a field of intensive studies.
We propose a self-testing scheme for all bipartite entangled states using a single family of steering inequalities with the minimal number of two measurements per party.
arXiv Detail & Related papers (2021-10-28T14:54:08Z) - The MultiBERTs: BERT Reproductions for Robustness Analysis [86.29162676103385]
Re-running pretraining can lead to substantially different conclusions about performance.
We introduce MultiBERTs: a set of 25 BERT-base checkpoints.
The aim is to enable researchers to draw robust and statistically justified conclusions about pretraining procedures.
arXiv Detail & Related papers (2021-06-30T15:56:44Z) - Minimal scheme for certifying three-outcome qubit measurements in the
prepare-and-measure scenario [0.0]
The number of outcomes is a defining property of a quantum measurement.
The certification of this property is possible in a semi-device-independent way.
arXiv Detail & Related papers (2021-05-20T17:39:46Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Statistical Approach to Quantum Phase Estimation [62.92678804023415]
We introduce a new statistical and variational approach to the phase estimation algorithm (PEA)
Unlike the traditional and iterative PEAs which return only an eigenphase estimate, the proposed method can determine any unknown eigenstate-eigenphase pair.
We show the simulation results of the method with the Qiskit package on the IBM Q platform and on a local computer.
arXiv Detail & Related papers (2021-04-21T00:02:00Z) - Unbounded randomness from uncharacterized sources [0.0]
In Device-Independent and Semi-Device-Independent scenarios, randomness is certified using projective measurements.
We propose a new Source-Device-Independent protocol, based on Positive Operator Valued Measurement (POVM)
We experimentally demonstrate our method with a compact and simple photonic setup that employs polarization-encoded qubits and POVM up to 6 outcomes.
arXiv Detail & Related papers (2020-10-12T15:54:22Z) - SMT-based Safety Verification of Parameterised Multi-Agent Systems [78.04236259129524]
We study the verification of parameterised multi-agent systems (MASs)
In particular, we study whether unwanted states, characterised as a given state formula, are reachable in a given MAS.
arXiv Detail & Related papers (2020-08-11T15:24:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.