Deep Ultrasound Denoising Using Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2306.07440v1
- Date: Mon, 12 Jun 2023 21:53:32 GMT
- Title: Deep Ultrasound Denoising Using Diffusion Probabilistic Models
- Authors: Hojat Asgariandehkordi, Sobhan Goudarzi, Adrian Basarab, Hassan Rivaz
- Abstract summary: Previous denoising methods often remove the speckles, which could be informative for radiologists and also for quantitative ultrasound.
Herein, a method based on the recent Denoising Diffusion Probabilistic Models (DDPM) is proposed.
It iteratively enhances the image quality by eliminating the noise while preserving the speckle texture.
- Score: 5.828784149537374
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ultrasound images are widespread in medical diagnosis for musculoskeletal,
cardiac, and obstetrical imaging due to the efficiency and non-invasiveness of
the acquisition methodology. However, the acquired images are degraded by
acoustic (e.g. reverberation and clutter) and electronic sources of noise. To
improve the Peak Signal to Noise Ratio (PSNR) of the images, previous denoising
methods often remove the speckles, which could be informative for radiologists
and also for quantitative ultrasound. Herein, a method based on the recent
Denoising Diffusion Probabilistic Models (DDPM) is proposed. It iteratively
enhances the image quality by eliminating the noise while preserving the
speckle texture. It is worth noting that the proposed method is trained in a
completely unsupervised manner, and no annotated data is required. The
experimental blind test results show that our method outperforms the previous
nonlocal means denoising methods in terms of PSNR and Generalized Contrast to
Noise Ratio (GCNR) while preserving speckles.
Related papers
- The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
We propose a new denoising method based on score-based reverse diffusion sampling.
Our network, trained only with coronal knee scans, excels even on out-of-distribution in vivo liver MRI data.
arXiv Detail & Related papers (2022-03-23T10:35:06Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
We present a diffusion probabilistic model that is fully unsupervised to learn from noise instead of signal.
Our method can significantly improve the image quality with a simple working pipeline and a small amount of training data.
arXiv Detail & Related papers (2022-01-27T19:02:38Z) - Ultrasound Speckle Suppression and Denoising using MRI-derived
Normalizing Flow Priors [16.741462523436848]
We propose a new unsupervised ultrasound speckle reduction and image denoising method based on maximum-a-posteriori estimation.
The method outperforms other (unsupervised) ultrasound denoising methods (NLM and OBNLM) both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-12-24T17:21:24Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - A Universal Deep Learning Framework for Real-Time Denoising of
Ultrasound Images [0.0]
We define a universal deep learning framework for real-time denoising of ultrasound images.
We analyse and compare state-of-the-art methods for the smoothing of ultrasound images.
Then, we propose a tuned version of the selected state-of-the-art denoising methods.
arXiv Detail & Related papers (2021-01-22T14:18:47Z) - Suppression of Correlated Noise with Similarity-based Unsupervised Deep
Learning [7.61850613267116]
Noise2Sim is an unsupervised deep denoising approach that works in a nonlocal nonlinear fashion to suppress correlated noises.
Nosie2Sim recovers features from noisy low-dose and photon-counting CT images as effectively as or even better than supervised learning methods.
arXiv Detail & Related papers (2020-11-06T14:31:08Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.