Complementarity and entanglement in a simple model of inelastic
scattering
- URL: http://arxiv.org/abs/2306.07498v1
- Date: Tue, 13 Jun 2023 02:20:49 GMT
- Title: Complementarity and entanglement in a simple model of inelastic
scattering
- Authors: David Kordahl
- Abstract summary: This model is well-known in the inelastic scattering literature.
It is presented under three different conceptual approaches.
The two-particle scattering wavefunction clarifies these differences and allows the consequences of quantum entanglement to be explored.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A simple model coupling a one-dimensional beam particle to a one-dimensional
harmonic oscillator is used to explore complementarity and entanglement. This
model, well-known in the inelastic scattering literature, is presented under
three different conceptual approaches, with both analytical and numerical
techniques discussed for each. In a purely classical approach, the final
amplitude of the oscillator can be found directly from the initial conditions.
In a partially quantum approach, with a classical beam and a quantum
oscillator, the final magnitude of the quantum-mechanical amplitude for the
oscillator's first excited state is directly proportional to the oscillator's
classical amplitude of vibration. Nearly the same first-order transition
probabilities emerge in the partially and fully quantum approaches, but
conceptual differences emerge. The two-particle scattering wavefunction
clarifies these differences and allows the consequences of quantum entanglement
to be explored.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum asymptotic amplitude for quantum oscillatory systems from the Koopman operator viewpoint [0.0]
We propose a definition of the quantum amplitude for quantum oscillatory systems.
We show that the proposed quantum amplitude appropriately yields isostable amplitude values that decay exponentially with a constant rate.
arXiv Detail & Related papers (2024-03-28T10:33:29Z) - Quantum model of hydrogen-like atoms in hilbert space by introducing the
creation and annihilation operators [0.0]
An analytical approach with series is extensively used based on wave mechanics theory in most of quantum textbooks.
We will illustrate how systematically making an appropriate groundwork to discover the coherent states can lead to providing the energy quantization and normalized radial wave functions attached to the matrix representation.
arXiv Detail & Related papers (2023-08-25T14:42:55Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - On quantum states generated from interacting oscillators [0.0]
We consider the possibility that one of the oscillators be under the influence of a classical external source.
We show how the problem can be generalized to n linearly interacting oscillators straightforwardly.
arXiv Detail & Related papers (2022-05-10T14:40:04Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Quantum asymptotic phase reveals signatures of quantum synchronization [0.0]
We propose a fully quantum-mechanical definition of the phase, which is a key quantity in the synchronization analysis of classical nonlinear oscillators.
We show that phase locking of the system with a harmonic drive at several different frequencies can be interpreted as synchronization on a torus rather than a simple limit cycle.
arXiv Detail & Related papers (2020-06-01T07:26:41Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.