論文の概要: Evaluating Bias and Noise Induced by the U.S. Census Bureau's Privacy
Protection Methods
- arxiv url: http://arxiv.org/abs/2306.07521v1
- Date: Tue, 13 Jun 2023 03:30:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 15:10:07.143152
- Title: Evaluating Bias and Noise Induced by the U.S. Census Bureau's Privacy
Protection Methods
- Title(参考訳): アメリカ合衆国国勢調査局のプライバシー保護方法によるバイアスと騒音の評価
- Authors: Christopher T. Kenny, Shiro Kuriwaki, Cory McCartan, Tyler Simko,
Kosuke Imai
- Abstract要約: アメリカ合衆国国勢調査局は、国勢調査統計の正確さと個々の情報の保護との間に難しいトレードオフに直面している。
我々は,2つの主要な開示回避システムによって誘導されるバイアスとノイズの独立評価を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The United States Census Bureau faces a difficult trade-off between the
accuracy of Census statistics and the protection of individual information. We
conduct the first independent evaluation of bias and noise induced by the
Bureau's two main disclosure avoidance systems: the TopDown algorithm employed
for the 2020 Census and the swapping algorithm implemented for the 1990, 2000,
and 2010 Censuses. Our evaluation leverages the recent release of the Noisy
Measure File (NMF) as well as the availability of two independent runs of the
TopDown algorithm applied to the 2010 decennial Census. We find that the NMF
contains too much noise to be directly useful alone, especially for Hispanic
and multiracial populations. TopDown's post-processing dramatically reduces the
NMF noise and produces similarly accurate data to swapping in terms of bias and
noise. These patterns hold across census geographies with varying population
sizes and racial diversity. While the estimated errors for both TopDown and
swapping are generally no larger than other sources of Census error, they can
be relatively substantial for geographies with small total populations.
- Abstract(参考訳): アメリカ合衆国国勢調査局は、国勢調査統計の正確さと個々の情報の保護との間に難しいトレードオフに直面している。
我々は,2020年国勢調査で採用したトップダウンアルゴリズムと,1990年,2000年,2010年国勢調査で実施したスワッピングアルゴリズムの2つの開示回避システムにより,バイアスとノイズの独立評価を行った。
本評価は,2010年度国勢調査に適用したtopdownアルゴリズムの2つの独立実行の可利用性とともに,最近リリースされた騒がしい測定ファイル(nmf)を活用した。
NMFにはノイズが多すぎるため、特にヒスパニック系と多人種系では直接的に有用である。
TopDownのポストプロセッシングはNMFノイズを劇的に低減し、バイアスとノイズの点でスワップと同じような正確なデータを生成する。
これらのパターンは、人口規模や人種の多様性の異なる国勢調査の地形にまたがる。
トップダウンとスワップの誤差は概して他の国勢調査誤差の源より大きいものではないが、人口の少ない地形では相対的に大きな誤差となる可能性がある。
関連論文リスト
- The 2020 United States Decennial Census Is More Private Than You (Might) Think [25.32778927275117]
我々は、2020年国勢調査のプライバシー予算の8.50%から13.76%が8つの地理的レベルごとに使われていないことを示した。
我々は、地理的レベルで同じプライバシー予算を維持しながら、ノイズ分散を15.08%から24.82%削減する。
論文 参考訳(メタデータ) (2024-10-11T23:06:15Z) - Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
本稿では,ネットワーク情報公開の文脈における偏見と不公平性に対する差別的プライバシの影響を特徴づける。
ネットワーク構造が全員に知られているネットワークリリースの問題を考えるが、エッジの重みをプライベートにリリースする必要がある。
我々の研究は、これらのネットワーク化された決定問題におけるプライバシーに起因する偏見と不公平性に関する理論的根拠と実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-08-08T08:37:37Z) - Benchmarking Private Population Data Release Mechanisms: Synthetic Data vs. TopDown [50.40020716418472]
本研究では、TopDownアルゴリズムとプライベート合成データ生成を比較し、クエリの複雑さによる精度への影響を判定する。
この結果から,TopDownアルゴリズムは,分散クエリに対して,評価したどの合成データ手法よりもはるかに優れたプライバシー-忠実トレードオフを実現することがわかった。
論文 参考訳(メタデータ) (2024-01-31T17:38:34Z) - Noisy Measurements Are Important, the Design of Census Products Is Much More Important [1.52292571922932]
McCartan et al. (2023) は「国勢調査データユーザーのための差分プライバシー業務」を要求している。
このコメントは、2020年の国勢調査ノイズ計測ファイル(NMFs)が、この嘆願の最良の焦点ではない理由を説明している。
論文 参考訳(メタデータ) (2023-12-20T15:43:04Z) - Making Differential Privacy Work for Census Data Users [0.0]
アメリカ国勢調査局は、研究者や政策立案者によって多用されているアメリカ人に関する詳細な人口統計データを収集し、公表している。
このプライバシ保護システムの重要な出力はノイズ計測ファイル(NMF)であり、これは集計された統計にランダムノイズを加えることで生成される。
我々は、NMFを使用可能なフォーマットに変換するために使用するプロセスを説明し、NMFの今後のバージョンをどうリリースするかを局に推奨する。
論文 参考訳(メタデータ) (2023-05-12T02:48:11Z) - Census TopDown: The Impacts of Differential Privacy on Redistricting [0.3746889836344765]
我々は、Censusデータの再分割におけるいくつかの重要な応用について考察する。
われわれはTopDownが許容可能な人口収支を持つ地区を生産する能力を脅かさないという確実な証拠を見つける。
論文 参考訳(メタデータ) (2022-03-09T23:28:53Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - The Impact of the U.S. Census Disclosure Avoidance System on
Redistricting and Voting Rights Analysis [0.0]
米国国勢調査局は、2020年国勢調査の回答者のプライバシーを、情報開示回避システム(DAS)を通じて保護する計画だ。
保護されたデータは、目的を再限定するのに十分な品質ではないことが分かりました。
分析の結果,DASが保護するデータは,投票者の投票率や党派・人種構成に応じて,特定の領域に偏っていることがわかった。
論文 参考訳(メタデータ) (2021-05-29T03:32:36Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Differential Privacy of Hierarchical Census Data: An Optimization
Approach [53.29035917495491]
国勢調査局(Census Bureaus)は、個人に関する機密情報を明らかにすることなく、大人口に関する社会経済的データをまとめて公開することに興味を持っている。
最近の出来事では、これらの組織が直面しているプライバシー上の課題がいくつか特定されている。
本稿では,階層的な個人数を解放する新たな差分プライバシ機構を提案する。
論文 参考訳(メタデータ) (2020-06-28T18:19:55Z) - Magnify Your Population: Statistical Downscaling to Augment the Spatial
Resolution of Socioeconomic Census Data [48.7576911714538]
重要社会経済的属性の詳細な推定を導出する新しい統計的ダウンスケーリング手法を提案する。
選択された社会経済変数ごとに、ランダムフォレストモデルが元の国勢調査単位に基づいて訓練され、その後、微細なグリッド化された予測を生成するために使用される。
本研究では,この手法を米国の国勢調査データに適用し,ブロック群レベルで選択された社会経済変数を,300の空間分解能のグリッドにダウンスケールする。
論文 参考訳(メタデータ) (2020-06-23T16:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。