Using Collision Momentum in Deep Reinforcement Learning Based
Adversarial Pedestrian Modeling
- URL: http://arxiv.org/abs/2306.07525v1
- Date: Tue, 13 Jun 2023 03:38:05 GMT
- Title: Using Collision Momentum in Deep Reinforcement Learning Based
Adversarial Pedestrian Modeling
- Authors: Dianwei Chen, Ekim Yurtsever, Keith Redmill and Umit Ozguner
- Abstract summary: We propose a reinforcement learning algorithm that specifically targets collisions and better uncovers unique failure modes of automated vehicle controllers.
Our algorithm is efficient and generates more severe collisions, allowing for the identification and correction of weaknesses in autonomous driving algorithms in complex and varied scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in pedestrian simulation often aims to develop realistic
behaviors in various situations, but it is challenging for existing algorithms
to generate behaviors that identify weaknesses in automated vehicles'
performance in extreme and unlikely scenarios and edge cases. To address this,
specialized pedestrian behavior algorithms are needed. Current research focuses
on realistic trajectories using social force models and reinforcement learning
based models. However, we propose a reinforcement learning algorithm that
specifically targets collisions and better uncovers unique failure modes of
automated vehicle controllers. Our algorithm is efficient and generates more
severe collisions, allowing for the identification and correction of weaknesses
in autonomous driving algorithms in complex and varied scenarios.
Related papers
- Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
This paper addresses the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars.
We propose a partial end-to-end algorithm that decouples the planning and control tasks.
By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.
arXiv Detail & Related papers (2023-12-11T14:27:10Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Evaluating the Robustness of Deep Reinforcement Learning for Autonomous
Policies in a Multi-agent Urban Driving Environment [3.8073142980733]
We propose a benchmarking framework for the comparison of deep reinforcement learning in a vision-based autonomous driving.
We run the experiments in a vision-only high-fidelity urban driving simulated environments.
The results indicate that only some of the deep reinforcement learning algorithms perform consistently better across single and multi-agent scenarios.
arXiv Detail & Related papers (2021-12-22T15:14:50Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Discovering Avoidable Planner Failures of Autonomous Vehicles using
Counterfactual Analysis in Behaviorally Diverse Simulation [16.86782673205523]
We introduce a planner testing framework that leverages recent progress in simulating behaviorally diverse traffic participants.
We show that our method can indeed find a wide range of critical planner failures.
arXiv Detail & Related papers (2020-11-24T09:44:23Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
We show how optimistic exploration can be easily combined with state-of-the-art reinforcement learning algorithms.
Our experiments demonstrate that optimistic exploration significantly speeds-up learning when there are penalties on actions.
arXiv Detail & Related papers (2020-06-15T18:37:38Z) - Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition [37.61747231296097]
We present a new safety validation approach that attempts to estimate the distribution over failures of an autonomous policy using approximate dynamic programming.
In both experiments, we observed an increase in the number of failures discovered compared to baseline approaches.
arXiv Detail & Related papers (2020-04-14T21:03:50Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
We propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules.
A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network.
Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms.
arXiv Detail & Related papers (2020-01-22T20:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.