論文の概要: Unique Characterisability and Learnability of Temporal Queries Mediated by an Ontology
- arxiv url: http://arxiv.org/abs/2306.07662v2
- Date: Thu, 2 May 2024 08:46:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 22:39:45.470441
- Title: Unique Characterisability and Learnability of Temporal Queries Mediated by an Ontology
- Title(参考訳): オントロジーによるテンポラルクエリの特異性と学習性
- Authors: Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, Michael Zakharyaschev,
- Abstract要約: オントロジーを介する時間的クエリの学習と特徴付けに関する最近の成果とテクニックが,時間的データやクエリにまで拡張可能であるかを検討する。
- 参考スコア(独自算出の注目度): 9.52250450722156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithms for learning database queries from examples and unique characterisations of queries by examples are prominent starting points for developing automated support for query construction and explanation. We investigate how far recent results and techniques on learning and unique characterisations of atemporal queries mediated by an ontology can be extended to temporal data and queries. Based on a systematic review of the relevant approaches in the atemporal case, we obtain general transfer results identifying conditions under which temporal queries composed of atemporal ones are (polynomially) learnable and uniquely characterisable.
- Abstract(参考訳): データベースクエリを例から学習するアルゴリズムと、例によるクエリのユニークな特徴付けは、クエリ構築と説明の自動サポートを開発するための重要な出発点である。
オントロジーを介する時間的クエリの学習と特徴付けに関する最近の成果とテクニックが,時間的データやクエリにまで拡張可能であるかを検討する。
時間的ケースにおける関連するアプローチの体系的なレビューに基づいて、時間的ケースで構成された時間的クエリが(ポリノミカルに)学習可能で、一意に特徴付けられる条件を特定する一般的な転送結果を得る。
関連論文リスト
- DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Reverse Engineering of Temporal Queries Mediated by LTL Ontologies [8.244587597395936]
データベースクエリのリバースエンジニアリングでは、与えられた回答と非回答の集合からクエリを構築することを目指している。
時間スタンプデータに対して線形時間論理の正のフラグメントで定式化されたクエリに対して,このクエリ・バイ・サンプル問題について検討する。
論文 参考訳(メタデータ) (2023-05-02T08:27:39Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link
Predictors [65.56849255423866]
本稿では,証明可能な推論能力を備えた複雑なクエリを用いたエンドツーエンド学習を支援するニューラルシンボリック手法を提案する。
これまでに検討されていない10種類の新しいクエリを含む新しいデータセットを開発する。
提案手法は,新しいデータセットにおいて先行手法を著しく上回り,既存データセットにおける先行手法を同時に上回っている。
論文 参考訳(メタデータ) (2023-04-14T11:35:35Z) - Automatically Summarizing Evidence from Clinical Trials: A Prototype
Highlighting Current Challenges [20.74608114488094]
TrialsSummarizerは、与えられたクエリに最も関係のあるランダム化制御された試行セットで提示されたエビデンスを自動的に要約することを目的としている。
システムは、条件、介入、結果の組み合わせを指定するクエリに一致するトライアルパブリッシュを検索する
トップkの研究は、神経多文書要約システムを通して受け継がれ、これらの試行の相乗効果をもたらす。
論文 参考訳(メタデータ) (2023-03-07T17:30:48Z) - RESAM: Requirements Elicitation and Specification for Deep-Learning
Anomaly Models with Applications to UAV Flight Controllers [24.033936757739617]
ドメインの専門家やディスカッションフォーラム、公式な製品ドキュメントから知識を統合化するための要件プロセスであるRESAMを紹介します。
本稿では,小型無人航空システムのための飛行制御システムに基づくケーススタディを提案し,その利用が効果的な異常検出モデルの構築を導くことを実証する。
論文 参考訳(メタデータ) (2022-07-18T18:09:59Z) - A Benchmark for Generalizable and Interpretable Temporal Question
Answering over Knowledge Bases [67.33560134350427]
TempQA-WDは時間的推論のためのベンチマークデータセットである。
Wikidataは、最も頻繁にキュレーションされ、公開されている知識ベースである。
論文 参考訳(メタデータ) (2022-01-15T08:49:09Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
本研究では,時間論理仕様を満たすための学習課題を,未知の環境下でエージェントのグループで検討する。
我々は、時間論理仕様のための最初のマルチエージェント強化学習手法を開発した。
主アルゴリズムの正確性と収束性を保証する。
論文 参考訳(メタデータ) (2021-02-01T01:13:03Z) - Abstractive Query Focused Summarization with Query-Free Resources [60.468323530248945]
本稿では,汎用的な要約リソースのみを利用して抽象的なqfsシステムを構築する問題を考える。
本稿では,要約とクエリのための新しい統一表現からなるMasked ROUGE回帰フレームワークであるMargeを提案する。
最小限の監視から学習したにもかかわらず,遠隔管理環境において最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-12-29T14:39:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。