Pipeline quantum processor architecture for silicon spin qubits
- URL: http://arxiv.org/abs/2306.07673v1
- Date: Tue, 13 Jun 2023 10:35:01 GMT
- Title: Pipeline quantum processor architecture for silicon spin qubits
- Authors: S. M. Patom\"aki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai, S. C.
Benjamin, J. J. L. Morton
- Abstract summary: Noisy intermediate-scale quantum (NISQ) devices seek to achieve quantum advantage over classical systems.
We propose a NISQ processor architecture using a qubit pipeline' in which all run-time control is applied globally.
This is achieved by progressing qubit states through a layered physical array of structures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noisy intermediate-scale quantum (NISQ) devices seek to achieve quantum
advantage over classical systems without the use of full quantum error
correction. We propose a NISQ processor architecture using a qubit `pipeline'
in which all run-time control is applied globally, reducing the required number
and complexity of control and interconnect resources. This is achieved by
progressing qubit states through a layered physical array of structures which
realise single and two-qubit gates. Such an approach lends itself to NISQ
applications such as variational quantum eigensolvers which require numerous
repetitions of the same calculation, or small variations thereof. In exchange
for simplifying run-time control, a larger number of physical structures is
required for shuttling the qubits as the circuit depth now corresponds to an
array of physical structures. However, qubit states can be `pipelined' densely
through the arrays for repeated runs to make more efficient use of physical
resources. We describe how the qubit pipeline can be implemented in a silicon
spin-qubit platform, to which it is well suited to due to the high qubit
density and scalability. In this implementation, we describe the physical
realisation of single and two qubit gates which represent a universal gate set
that can achieve fidelities of $\mathcal{F} \geq 0.9999$, even under typical
qubit frequency variations.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Towards early fault tolerance on a 2$\times$N array of qubits equipped with shuttling [0.0]
Two-dimensional grid of locally-interacting qubits is promising platform for fault tolerant quantum computing.
In this paper, we show that such constrained architectures can also support fault tolerance.
We demonstrate that error correction is possible and identify the classes of codes that are naturally suited to this platform.
arXiv Detail & Related papers (2024-02-19T23:31:55Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
Dynamically field-programmable qubit arrays (DPQA) have emerged as a promising platform for quantum information processing.
In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements.
We show that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture.
arXiv Detail & Related papers (2023-06-06T08:13:10Z) - A Classical Architecture For Digital Quantum Computers [21.99729700579818]
Scaling bottlenecks the making of digital quantum computers poses challenges from both the quantum computation and the classical components.
We present a classical architecture to cope with a comprehensive list of the latter challenges em all at once, and implement it fully in an end-to-end system.
Our architecture enables scalable, high-precision control of large quantum processors and accommodates evolving requirements of quantum hardware.
arXiv Detail & Related papers (2023-05-23T17:44:06Z) - Mapping quantum circuits to modular architectures with QUBO [3.0148208709026005]
In multi-core architectures, it is crucial to minimize the amount of communication between cores when executing an algorithm.
We propose for the first time a Quadratic Unconstrained Binary Optimization technique to encode the problem and the solution.
Our method showed promising results and performed exceptionally well with very dense and highly-parallelized circuits.
arXiv Detail & Related papers (2023-05-11T09:45:47Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
We show how to leverage an alternative approach, based on a graph representation of the Hamiltonian, to determine controllability of arrays of coupled qubits.
We find that the number of controls can be reduced from five to one for complex qubit-qubit couplings.
arXiv Detail & Related papers (2022-12-09T12:59:44Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.