Mapping quantum circuits to modular architectures with QUBO
- URL: http://arxiv.org/abs/2305.06687v1
- Date: Thu, 11 May 2023 09:45:47 GMT
- Title: Mapping quantum circuits to modular architectures with QUBO
- Authors: Medina Bandic, Luise Prielinger, Jonas N\"u{\ss}lein, Anabel Ovide,
Santiago Rodrigo, Sergi Abadal, Hans van Someren, Gayane Vardoyan, Eduard
Alarcon, Carmen G. Almudever and Sebastian Feld
- Abstract summary: In multi-core architectures, it is crucial to minimize the amount of communication between cores when executing an algorithm.
We propose for the first time a Quadratic Unconstrained Binary Optimization technique to encode the problem and the solution.
Our method showed promising results and performed exceptionally well with very dense and highly-parallelized circuits.
- Score: 3.0148208709026005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modular quantum computing architectures are a promising alternative to
monolithic QPU (Quantum Processing Unit) designs for scaling up quantum
devices. They refer to a set of interconnected QPUs or cores consisting of
tightly coupled quantum bits that can communicate via quantum-coherent and
classical links. In multi-core architectures, it is crucial to minimize the
amount of communication between cores when executing an algorithm. Therefore,
mapping a quantum circuit onto a modular architecture involves finding an
optimal assignment of logical qubits (qubits in the quantum circuit) to
different cores with the aim to minimize the number of expensive inter-core
operations while adhering to given hardware constraints. In this paper, we
propose for the first time a Quadratic Unconstrained Binary Optimization (QUBO)
technique to encode the problem and the solution for both qubit allocation and
inter-core communication costs in binary decision variables. To this end, the
quantum circuit is split into slices, and qubit assignment is formulated as a
graph partitioning problem for each circuit slice. The costly inter-core
communication is reduced by penalizing inter-core qubit communications. The
final solution is obtained by minimizing the overall cost across all circuit
slices. To evaluate the effectiveness of our approach, we conduct a detailed
analysis using a representative set of benchmarks having a high number of
qubits on two different multi-core architectures. Our method showed promising
results and performed exceptionally well with very dense and
highly-parallelized circuits that require on average 0.78 inter-core
communications per two-qubit gate.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Attention-Based Deep Reinforcement Learning for Qubit Allocation in Modular Quantum Architectures [1.8781124875646162]
This research contributes to the advancement of scalable quantum computing systems by introducing a novel learning-based approach for efficient quantum circuit compilation and mapping.
In this work, we propose a novel approach employing Deep Reinforcement Learning (DRL) methods to learn theses for a specific multi-core architecture.
arXiv Detail & Related papers (2024-06-17T12:09:11Z) - Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era [2.465579331213113]
We introduce the Hungarian Qubit Assignment (HQA) algorithm, a multi-core mapping algorithm designed to optimize qubit assignments to cores with the aim of reducing inter-core communications.
Our evaluation of HQA against state-of-the-art circuit mapping algorithms for modular architectures reveals a $4.9times$ and $1.6times$ improvement in terms of execution time and non-local communications.
arXiv Detail & Related papers (2024-03-25T21:31:39Z) - Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures [2.465579331213113]
We present a pioneering characterization of the era of monolithic-temporal inter-core qubit traffic in large-scale circuits.
The programs are executed on an all-to-all connected-core architecture that supports up to around 1000 qubits.
Based on the showcased results, we provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
arXiv Detail & Related papers (2023-10-03T09:54:41Z) - Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures [1.1288814203214292]
Quantum computers are expected to adopt a modular approach, featuring clusters of tightly connected quantum bits with sparser connections between these clusters.
Efficiently distributing qubits across multiple processing cores is critical for improving quantum computing systems' performance and scalability.
We propose the Hungarian Qubit Assignment (HQA) algorithm, which leverages the Hungarian algorithm to improve qubit-to-core assignment.
arXiv Detail & Related papers (2023-09-21T15:48:45Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
Dynamically field-programmable qubit arrays (DPQA) have emerged as a promising platform for quantum information processing.
In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements.
We show that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture.
arXiv Detail & Related papers (2023-06-06T08:13:10Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.