論文の概要: GPT-Calls: Enhancing Call Segmentation and Tagging by Generating
Synthetic Conversations via Large Language Models
- arxiv url: http://arxiv.org/abs/2306.07941v1
- Date: Fri, 9 Jun 2023 15:47:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 12:23:02.269943
- Title: GPT-Calls: Enhancing Call Segmentation and Tagging by Generating
Synthetic Conversations via Large Language Models
- Title(参考訳): gpt-calls: 大きな言語モデルによる合成会話生成によるコールセグメンテーションとタグ付けの強化
- Authors: Itzik Malkiel, Uri Alon, Yakir Yehuda, Shahar Keren, Oren Barkan, Royi
Ronen, Noam Koenigstein
- Abstract要約: GPT-Callsはオフラインとオンラインのフェーズで構成されている。
オンラインフェーズは、すべての呼び出しに別々に適用され、オフラインフェーズで見られる、書き起こされた会話とトピックアンカーの類似度をスコアする。
時間領域分析は、セグメントにグループ発話の類似度スコアを適用し、トピックをタグ付けする。
- 参考スコア(独自算出の注目度): 21.363919321972837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transcriptions of phone calls are of significant value across diverse fields,
such as sales, customer service, healthcare, and law enforcement. Nevertheless,
the analysis of these recorded conversations can be an arduous and
time-intensive process, especially when dealing with extended or multifaceted
dialogues. In this work, we propose a novel method, GPT-distilled Calls
Segmentation and Tagging (GPT-Calls), for efficient and accurate call
segmentation and topic extraction. GPT-Calls is composed of offline and online
phases. The offline phase is applied once to a given list of topics and
involves generating a distribution of synthetic sentences for each topic using
a GPT model and extracting anchor vectors. The online phase is applied to every
call separately and scores the similarity between the transcripted conversation
and the topic anchors found in the offline phase. Then, time domain analysis is
applied to the similarity scores to group utterances into segments and tag them
with topics. The proposed paradigm provides an accurate and efficient method
for call segmentation and topic extraction that does not require labeled data,
thus making it a versatile approach applicable to various domains. Our
algorithm operates in production under Dynamics 365 Sales Conversation
Intelligence, and our research is based on real sales conversations gathered
from various Dynamics 365 Sales tenants.
- Abstract(参考訳): 電話の書き起こしは、セールス、カスタマーサービス、ヘルスケア、法執行機関など、さまざまな分野において重要な意味を持つ。
それでも、記録された会話の分析は、特に拡張または多面的な対話を扱う場合、困難で時間を要するプロセスである。
本稿では,gptを蒸留したコールセグメンテーションとタギング(gpt-calls)という新しい手法を提案し,効率的なコールセグメンテーションとトピック抽出を行う。
GPT-Callsはオフラインとオンラインのフェーズで構成されている。
オフラインフェーズは、与えられたトピックのリストに一度適用され、GPTモデルを用いて各トピックに対する合成文の分布を生成し、アンカーベクトルを抽出する。
オンラインフェーズはすべての呼び出しに別々に適用され、オフラインフェーズで見られる会話とトピックアンカーの類似性を評価する。
次に、類似度スコアに時間領域分析を適用し、グループ発話をセグメント化し、トピックをタグ付けする。
提案するパラダイムは,ラベル付きデータを必要とせず,様々な領域に適用可能な,高精度かつ効率的なコールセグメンテーションとトピック抽出手法を提供する。
当社のアルゴリズムはdynamics 365セールス会話インテリジェンスの下で運用されており、dynamics 365セールステナントから収集した実際のセールス会話に基づいています。
関連論文リスト
- Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
我々は、比較的未探索なタスク設定、長い尾のセマンティックセマンティックセグメンテーション(LTSS)に焦点を当てる。
本稿では,セマンティックセグメンテーション手法と長鎖解の性能を示すために,二値評価システムを提案し,LTSSベンチマークを構築した。
また,1対1のマッチングによって過剰な圧縮問題を解決する周波数ベースのマーカであるLTSSを改善するトランスフォーマーベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:57:56Z) - Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries [48.243879779374836]
LLM (Large Language Models) を用いたDST (Few-shot dialogue state tracking) では,会話検索を効果的かつ効率的に行うことで,学習の迅速化を図っている。
従来は検索キーやクエリとして生の対話コンテキストを使用していた。
会話のテキスト要約に基づいて会話検索を行う。
LLMに基づく会話要約器がクエリとキー生成に採用され、効果的な内部製品探索が可能となる。
論文 参考訳(メタデータ) (2024-02-20T14:31:17Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - How Good is Automatic Segmentation as a Multimodal Discourse Annotation
Aid? [3.3861948721202233]
我々は,協調問題解決のための支援として,異なる発話分割手法の質を評価する。
また, 音素発声は, 自動分節音声と最小の対応を保ち, 異なる分節音声を用いた分節音声も一致しないことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:06:15Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
対話トピック(DTS)は、様々な対話モデリングタスクにおいて重要な役割を果たす。
本稿では,ラベルなし対話データからトピック対応発話表現を学習する,教師なしDSSフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-04T11:35:23Z) - A combined approach to the analysis of speech conversations in a contact
center domain [2.575030923243061]
本稿では, インバウンドフローやアウトバウンドフローから抽出した通話記録を扱う, イタリアのコンタクトセンターにおける音声分析プロセスの実験について述べる。
まず,Kaldi フレームワークをベースとした社内音声合成ソリューションの開発について詳述する。
そこで我々は,コールトランスクリプトのセマンティックタグ付けに対する異なるアプローチの評価と比較を行った。
最後に、タグ付け問題にJ48Sと呼ばれる決定木インデューサを適用する。
論文 参考訳(メタデータ) (2022-03-12T10:03:20Z) - Towards Theme Detection in Personal Finance Questions [0.0]
本稿では,複数のテーマの発生を抽出するコールセンターテーマ検出手法を提案する。
一つの質問における複数のテーマの発生を捉えるために、このアプローチは質問レベルではなく、文中のクラスタをエンコードする。
我々は,このタスクに対してマイクロF1を0.46で達成し,その結果,少しうるさい場合でも,クラスタに関連付けられたラベルとトポロジ的に一致した文を含むことを示す。
論文 参考訳(メタデータ) (2021-10-04T16:44:16Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
我々は、応答と関連する会話コンテキストの間のトピックを一致させるために、動的トピック追跡タスクとして応答選択をフレーム化する。
本研究では,大規模な事前学習モデルによる効率的な符号化を支援する新しいマルチタスク学習フレームワークを提案する。
DSTC-8 Ubuntu IRCデータセットの実験結果は、応答選択とトピックのアンタングル化タスクにおける最先端の結果を示している。
論文 参考訳(メタデータ) (2020-10-15T14:21:38Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
本稿では,トピック認識発話を教師なしでセグメント化して抽出する,多元対話モデリングのための新しいソリューションを提案する。
トピック・アウェア・モデリングは、新たに提案されたトピック・アウェア・セグメンテーション・アルゴリズムとトピック・アウェア・デュアル・アテンション・マッチング(TADAM)ネットワークによって実現されている。
論文 参考訳(メタデータ) (2020-09-26T08:43:06Z) - Detecting and Classifying Malevolent Dialogue Responses: Taxonomy, Data
and Methodology [68.8836704199096]
コーパスベースの会話インタフェースは、テンプレートベースのエージェントや検索ベースのエージェントよりも多様な自然なレスポンスを生成することができる。
コーパスベースの会話エージェントの生成能力が増大すると、マレヴォレントな反応を分類し、フィルタリングする必要性が生じる。
不適切な内容の認識と分類に関するこれまでの研究は、主にある種のマレヴォレンスに焦点を絞っている。
論文 参考訳(メタデータ) (2020-08-21T22:43:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。