論文の概要: Optimal Inference in Contextual Stochastic Block Models
- arxiv url: http://arxiv.org/abs/2306.07948v2
- Date: Tue, 5 Mar 2024 16:09:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 03:16:45.520691
- Title: Optimal Inference in Contextual Stochastic Block Models
- Title(参考訳): 文脈確率ブロックモデルにおける最適推論
- Authors: O. Duranthon and L. Zdeborov\'a
- Abstract要約: 属性グラフの教師なしコミュニティ検出のために,文脈ブロックモデル (cSBM) を提案した。
cSBMは、半教師付きノード分類のためのグラフニューラルネットワーク(GNN)の性能を評価するための合成データセットとして広く利用されている。
本稿では,本アルゴリズムが到達した精度と,本論文で提案したGNNアーキテクチャの性能との間には,かなりのギャップが存在することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The contextual stochastic block model (cSBM) was proposed for unsupervised
community detection on attributed graphs where both the graph and the
high-dimensional node information correlate with node labels. In the context of
machine learning on graphs, the cSBM has been widely used as a synthetic
dataset for evaluating the performance of graph-neural networks (GNNs) for
semi-supervised node classification. We consider a probabilistic Bayes-optimal
formulation of the inference problem and we derive a belief-propagation-based
algorithm for the semi-supervised cSBM; we conjecture it is optimal in the
considered setting and we provide its implementation. We show that there can be
a considerable gap between the accuracy reached by this algorithm and the
performance of the GNN architectures proposed in the literature. This suggests
that the cSBM, along with the comparison to the performance of the optimal
algorithm, readily accessible via our implementation, can be instrumental in
the development of more performant GNN architectures.
- Abstract(参考訳): グラフと高次元ノード情報の両方がノードラベルと相関する属性グラフ上での教師なしコミュニティ検出のために,文脈確率ブロックモデル(cSBM)を提案した。
グラフ上の機械学習の文脈において、cSBMは半教師付きノード分類のためのグラフニューラルネットワーク(GNN)の性能を評価するための合成データセットとして広く使われている。
我々は、確率論的ベイズ最適化による推論問題の定式化を検討し、半教師付きcSBMに対する信念プロパゲーションに基づくアルゴリズムを導出する。
本稿では,本アルゴリズムが到達した精度と,本論文で提案したGNNアーキテクチャの性能との間には,かなりのギャップが存在することを示す。
このことは、より高性能なGNNアーキテクチャの開発において、cSBMが最適アルゴリズムの性能との比較とともに、我々の実装を通して容易にアクセス可能であることを示唆している。
関連論文リスト
- Unsupervised Optimisation of GNNs for Node Clustering [4.358468367889626]
我々は,GNN によるコミュニティにノードをクラスタ化できることを示す。
また,教師なしメートル法の性能が地中信頼度を予測できるかどうかについても検討した。
論文 参考訳(メタデータ) (2024-02-12T17:53:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Optimality of Message-Passing Architectures for Sparse Graphs [13.96547777184641]
スパース設定における特徴デコレーショングラフ上のノード分類問題、すなわちノードの期待次数がノード数で$O(1)$である場合について検討する。
局所ベイズ最適性(英語版)と呼ばれるノード分類タスクに対するベイズ最適性(英語版)の概念を導入する。
最適なメッセージパッシングアーキテクチャは,低グラフ信号のレギュレーションにおける標準と高グラフ信号のレギュレーションにおける典型とを補間することを示す。
論文 参考訳(メタデータ) (2023-05-17T17:31:20Z) - Neural-prior stochastic block model [0.0]
我々は,コミュニティを,逆ではなくノード属性によって決定されるものとしてモデル化することを提案する。
本稿では,信念伝播と近似メッセージパッシングを組み合わせた統計物理に基づくアルゴリズムを提案する。
提案したモデルとアルゴリズムは理論とアルゴリズムのベンチマークとして利用できる。
論文 参考訳(メタデータ) (2023-03-17T14:14:54Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Neural Structured Prediction for Inductive Node Classification [29.908759584092167]
本稿では,ラベル付き学習グラフのモデルを学習し,未ラベルの試験グラフ上でノードラベルを推論するために一般化することを目的とした,帰納的環境におけるノード分類について検討する。
本稿では,両者の利点を組み合わせたSPN(Structured Proxy Network)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-15T15:50:27Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。